<--- Back to Details
First PageDocument Content
Algebra / Cyclotomic field / Algebraic number field / Prime number / Cyclotomic unit / Field / Trigonometry in Galois fields / Proofs of quadratic reciprocity / Abstract algebra / Algebraic number theory / Mathematics
Date: 2004-10-01 23:05:14
Algebra
Cyclotomic field
Algebraic number field
Prime number
Cyclotomic unit
Field
Trigonometry in Galois fields
Proofs of quadratic reciprocity
Abstract algebra
Algebraic number theory
Mathematics

FERMAT’S LAST THEOREM FOR REGULAR PRIMES KEITH CONRAD

Add to Reading List

Source URL: www.math.uconn.edu

Download Document from Source Website

File Size: 133,86 KB

Share Document on Facebook

Similar Documents

Cyclotomic schemes over a field Normal cyclotomic schemes over a ring Criterion of normality for Galois rings Normal cyclotomic schemes over a Galois ring Sergei Evdokimov

DocID: 1rGvw - View Document

Algebra / Abstract algebra / Mathematics / Commutative algebra / Algebraic structures / Ring theory / Homological algebra / Algebraic number theory / Algebraic number field / Divisor / Gorenstein ring / Ring

MATHEMATICS OF COMPUTATION SArticle electronically published on February 15, 2002 CLASS NUMBERS OF REAL CYCLOTOMIC FIELDS OF PRIME CONDUCTOR

DocID: 1rl2V - View Document

Algebra / Abstract algebra / Ring theory / Class field theory / Field theory / Cyclotomic fields / Algebraic number theory / Algebraic geometry / Conductor / Iwasawa theory / Algebraic number field / Complex multiplication

73 Documenta Math. On the Equivariant Tamagawa Number Conjecture

DocID: 1rg21 - View Document

Algebra / Abstract algebra / Ring theory / Field theory / Number theory / Algebraic number theory / Cyclotomic fields / P-adic number / P-adic modular form / Cyclotomic character / Valuation / P-adic L-function

387 Documenta Math. Coleman Power Series for K2 and p-Adic Zeta Functions

DocID: 1rciR - View Document

Number theory / Mathematics / Cyclotomic fields / Discrete mathematics / Analytic number theory / Gauss sum / Kloosterman sum / Equidistribution theorem / FP / Computability theory

Convolution and Equidistribution: Sato-Tate Theorems for Finite-field Mellin Transforms Nicholas M. Katz Princeton University Press Princeton and Oxford

DocID: 1r18Y - View Document