<--- Back to Details
First PageDocument Content
Numerical linear algebra / Householder transformation / Tridiagonal matrix / Inverse iteration / Eigenvalues and eigenvectors / Eigenvalue algorithm / Matrix / Symmetric matrix / Diagonal matrix / Algebra / Linear algebra / Mathematics
Date: 2010-07-02 11:13:00
Numerical linear algebra
Householder transformation
Tridiagonal matrix
Inverse iteration
Eigenvalues and eigenvectors
Eigenvalue algorithm
Matrix
Symmetric matrix
Diagonal matrix
Algebra
Linear algebra
Mathematics

Microsoft PowerPoint - VECPAR2010katagiri-open.pptx

Add to Reading List

Source URL: vecpar.fe.up.pt

Download Document from Source Website

File Size: 4,43 MB

Share Document on Facebook

Similar Documents

Extremal Representation for Non-diagonal Elements of Hermitian Matrix Alexander I. Rusakov1 Rostov State University of Transport Communication, Rostov-on-Don, Russian Federation ___________________________________

DocID: 1usnu - View Document

TRAn implementation of a reordering approach for increasing the product of diagonal entries in a sparse matrix Ang Li, Radu Serban, Dan Negrut

DocID: 1tDH8 - View Document

Needlework / Mathematics / Elementary geometry / Quilting / Quadrilaterals / Visual arts / Diagonal / Rectangle / Appliqu / Matrix / City block / Karnaugh map

Quilter’s Alphabet Block of the Month First Month Fabric Requirements: 3/8 yd. Each of 15 Colors Blue Sashing & Borders: 2 ¼ yds.

DocID: 1rmHv - View Document

Algebra / Linear algebra / Mathematics / Matrices / Matrix theory / Singular value decomposition / Mathematical physics / Matrix / Hermitian matrix / Eigenvalues and eigenvectors / Diagonalizable matrix / Diagonal matrix

SPECTRAL ANALYSIS OF NON-HERMITIAN MATRICES MATHEMATICAL PHYSICS 2010 MATTHEW COUDRON, AMALIA CULIUC, PHILIP VU, STEPHEN WEBSTER

DocID: 1rmo3 - View Document

Algebra / Linear algebra / Mathematics / Sparse matrices / Matrices / Matrix theory / Matrix / Band matrix / Crossbar switch / Diagonal matrix / Adjacency matrix

Microsoft Word - IJIMA03-02.docx

DocID: 1rh8R - View Document