<--- Back to Details
First PageDocument Content
Polygons / Triangles / Triangle geometry / Triangle / Angle / Quadrilateral / Regular polygon / Internal and external angle / Circle / Geometry / Euclidean plane geometry / Elementary geometry
Date: 2014-02-28 13:45:23
Polygons
Triangles
Triangle geometry
Triangle
Angle
Quadrilateral
Regular polygon
Internal and external angle
Circle
Geometry
Euclidean plane geometry
Elementary geometry

Extending the Enneagon Teacher Packet

Add to Reading List

Source URL: mathforum.org

Download Document from Source Website

File Size: 303,94 KB

Share Document on Facebook

Similar Documents

Euclidean plane geometry / Pseudotriangle / Tessellation / Simple polygon / Polygon / Collision detection / Internal and external angle / Convex and concave polygons / Convex hull / Geometry / Polygons / Triangulation

Deformable Free Space Tilings for Kinetic Collision Detection Pankaj K. Agarwaly Julien Baschz Leonidas J. Guibasz John Hershbergerx

DocID: 1g096 - View Document

Euclidean plane geometry / Adjacent angle / Vertical angles / Complementary angles / Polygon / Internal and external angle / Supplementary angles / Right angle / Triangle / Geometry / Elementary geometry / Angle

Geometry Name Angle Pairs In “Shapes in the Sand” on page 4, you used the degree formula to find unknown angle measures in a given polygon. You can also use the properties of different angle pairs to solve for missin

DocID: 19dtp - View Document

Polygons / Triangles / Triangle geometry / Triangle / Internal and external angle / Pentagon / Trigonometry / Geometry / Euclidean geometry / Euclidean plane geometry

EMPIRICAL GENERALISATION AS AN INADEQUATE COGNITIVE SCAFFOLD TO THEORETICAL GENERALISATION OF A MORE COMPLEX CONCEPT1 Gaye Williams University of Melbourne The impact of prior learning on new learning is highlighted by t

DocID: 18PWc - View Document

Simple polygon / Vertex / Convex hull / Quadrilateral / Convex and concave polygons / Internal and external angle / Pseudotriangle / Erdős–Nagy theorem / Geometry / Polygons / Euclidean plane geometry

CCCG 2006, Kingston, Ontario, August 14–16, 2006 Polygons Flip Finitely: Flaws and a Fix Erik D. Demaine∗ Blaise Gassend†

DocID: 17Omf - View Document

Euclidean geometry / Euclidean plane geometry / Puzzles / Tangram / Dissection puzzle / Mechanical puzzle / Convex and concave polygons / Internal and external angle / Area / Geometry / Mathematics / Polygons

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014 The Convex Configurations of “Sei Sh¯ onagon Chie no Ita” and Other Dissection Puzzles Eli Fox-Epstein∗

DocID: 17MJi - View Document