<--- Back to Details
First PageDocument Content
Fourier analysis / Digital signal processing / Joseph Fourier / Unitary operators / Discrete Fourier transform / Fourier transform / Exponential map / Hankel transform / Common integrals in quantum field theory / Mathematical analysis / Integral transforms / Mathematics
Date: 2010-08-22 13:40:38
Fourier analysis
Digital signal processing
Joseph Fourier
Unitary operators
Discrete Fourier transform
Fourier transform
Exponential map
Hankel transform
Common integrals in quantum field theory
Mathematical analysis
Integral transforms
Mathematics

Add to Reading List

Source URL: homepages.dias.ie

Download Document from Source Website

File Size: 351,71 KB

Share Document on Facebook

Similar Documents

99 Documenta Math. Bloch and Kato’s Exponential Map: Three Explicit Formulas

DocID: 1rZ14 - View Document

Topology / Geometry / Space / Riemannian geometry / Differential geometry / Geometric topology / Differential geometry of surfaces / 3-manifold / Topological space / Exponential map / Minimal surface / Riemannian manifold

arXiv:1505.06764v2 [math.DG] 9 NovFinite topology minimal surfaces in homogeneous three-manifolds William H. Meeks III∗

DocID: 1rnI1 - View Document

Algebra / Mathematics / Linear algebra / Kernel / Linear map / Field extension / Vector space / Fredholm alternative

On systems of exponential sums with real exponents Boris Zilber April 18, 2011 In [Z2] we studied the theory of formal exponentiation (raising to powers) and proved that it is very nice (superstable

DocID: 1qP8y - View Document

Field theory / Ring theory / Number theory / Algebraic geometry / Commutative algebra / Valuation / P-adic Hodge theory / P-adic number / Witt vector / Ring / Symbol

99 Documenta Math. Bloch and Kato’s Exponential Map: Three Explicit Formulas

DocID: 1pERy - View Document

Riemannian geometry / Differential geometry / Connection / Curvature / Bernhard Riemann / Finsler manifold / Differential geometry of surfaces / Geodesic / Exponential map / Sectional curvature / Torsion tensor / Metric tensor

A Sphere Theorem for non-reversible Finsler Metrics∗ Hans-Bert Rademacher †

DocID: 1pvYK - View Document