<--- Back to Details
First PageDocument Content
Quantum information science / Quantum computing / Qubit / Quantum state / Quantum mechanics / Mathematical formulation of quantum mechanics / Quantum entanglement / Toric code / Graph state / One-way quantum computer / Quantum error correction
Date: 2016-01-27 06:37:56
Quantum information science
Quantum computing
Qubit
Quantum state
Quantum mechanics
Mathematical formulation of quantum mechanics
Quantum entanglement
Toric code
Graph state
One-way quantum computer
Quantum error correction

Add to Reading List

Source URL: www.thp.uni-koeln.de

Download Document from Source Website

File Size: 1,06 MB

Share Document on Facebook

Similar Documents

Quantum complexity theory / Quantum information science / Quantum computing / Computational complexity theory / Theoretical computer science / PP / BQP / QMA / Quantum algorithm / Quantum circuit / IP / Quantum information

Limitations of Quantum Advice and One-Way Communication

DocID: 1pojZ - View Document

Quantum information science / Quantum computing / Qubit / Quantum state / Quantum mechanics / Mathematical formulation of quantum mechanics / Quantum entanglement / Toric code / Graph state / One-way quantum computer / Quantum error correction

PDF Document

DocID: 1pgcd - View Document

Applied mathematics / Quantum complexity theory / Computational complexity theory / Secure multi-party computation / Communication complexity / Secure two-party computation / PP / One-way function / IP / Cryptography / Theoretical computer science / Cryptographic protocols

Efficient Set Intersection with Simulation-Based Security Michael J. Freedman∗ Carmit Hazay† Kobbi Nissim‡

DocID: 1gCPu - View Document

Physics / Quantum error correction / Quantum circuit / Stabilizer code / Quantum computer / One-way quantum computer / Controlled NOT gate / Qubit / Toric code / Quantum information science / Theoretical computer science / Quantum mechanics

PHYSICAL REVIEW A 87, Simulating the transverse Ising model on a quantum computer: Error correction with the surface code Hao You (),1,2 Michael R. Geller,1 and P. C. Stancil1,2 1

DocID: 1a18C - View Document

Mathematics / Learning with errors / Lattice-based cryptography / Lattice problem / Lattice / Ideal lattice cryptography / Quantum algorithm / Quantum computer / One-way function / Cryptography / Applied mathematics / Theoretical computer science

The Learning with Errors Problem Oded Regev∗ Abstract In this survey we describe the Learning with Errors (LWE) problem, discuss its properties, its hardness, and its cryptographic applications.

DocID: 14jBJ - View Document