<--- Back to Details
First PageDocument Content
Elliptic functions / Analytic number theory / Riemann surfaces / Ordinary differential equations / Theta function / Hypergeometric function / Orbifold / Quadratic form / Shimura variety / Mathematical analysis / Mathematics / Modular forms
Date: 2007-09-12 16:04:49
Elliptic functions
Analytic number theory
Riemann surfaces
Ordinary differential equations
Theta function
Hypergeometric function
Orbifold
Quadratic form
Shimura variety
Mathematical analysis
Mathematics
Modular forms

arXiv:math.NT[removed]v1 16 Apr 2003

Add to Reading List

Source URL: www.math.toronto.edu

Download Document from Source Website

File Size: 169,71 KB

Share Document on Facebook

Similar Documents

Cycles and Subschemes 14Cxx [1] Timothy G. Abbott, Kiran S. Kedlaya, and David Roe, Bounding Picard numbers of surfaces using p-adic cohomology, Anita Buckley and Bal´azs Szendr¨oi, Orbifold Riemann-Roch for

DocID: 1voxn - View Document

A panaroma of the fundamental group of the modular orbifold A. Muhammed Uluda˘g∗and Ayberk Zeytin∗∗ Department of Mathematics, Galatasaray University ˙ C

DocID: 1tBnz - View Document

Mathematics / Algebra / Abstract algebra / Algebraic topology / Simplicial complex / Abstract simplicial complex / Simplicial set / Simplex / Topological graph / Orbifold / Building

On Topological Minors in Random Simplicial Complexes∗ Anna Gundert† Uli Wagner‡ arXiv:1404.2106v2 [math.CO] 4 May 2015

DocID: 1rnFz - View Document

Huson / Orbifold notation / Bioinformatics

Daniel Huson Bibliography Jan-2015

DocID: 1rhZV - View Document

Abstract algebra / Algebra / Mathematics / Algebraic geometry / Homological algebra / Symbol / Valuation / Sheaf / Motive / Orbifold / Holomorphic functional calculus

165 Documenta Math. On the Leading Terms of Zeta Isomorphisms and p-Adic L-functions in Non-Commutative Iwasawa Theory

DocID: 1rfLe - View Document