<--- Back to Details
First PageDocument Content
Automorphic forms / Conjectures / Representation theory of Lie groups / Galois theory / Langlands program / Modular form / Galois module / P-adic number / Jean-Pierre Serre / Abstract algebra / Mathematics / Number theory
Date: 2012-11-08 12:04:01
Automorphic forms
Conjectures
Representation theory of Lie groups
Galois theory
Langlands program
Modular form
Galois module
P-adic number
Jean-Pierre Serre
Abstract algebra
Mathematics
Number theory

Curriculum Vitae Kevin Buzzard November 8, 2012

Add to Reading List

Source URL: www2.imperial.ac.uk

Download Document from Source Website

File Size: 95,64 KB

Share Document on Facebook

Similar Documents

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples √ √ Example 1.1. The field extension Q( 2, 3)/Q is Galois of degree 4, so its Galois√group

DocID: 1uWWM - View Document

Galois theory for schemes H. W. Lenstra Mathematisch Instituut Universiteit Leiden Postbus 9512, 2300 RA Leiden The Netherlands

DocID: 1uGuK - View Document

Fields and Galois Theory J.S. Milne Version 4.22 March 30, 2011 A more recent version of these notes is available at www.jmilne.org/math/

DocID: 1tRb0 - View Document

The pro-étale fundamental group Wouter Zomervrucht, December 16, Infinite Galois theory We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by Noohi [3] and slightly m

DocID: 1t9l4 - View Document

301 Documenta Math. Additive Structure of Multiplicative Subgroups of Fields and Galois Theory

DocID: 1sAX8 - View Document