<--- Back to Details
First PageDocument Content
Lie groups / Leonard Eugene Dickson / Quadratic forms / Lie algebras / Orthogonal group / Representation theory / Group of Lie type / Nicolae Popescu / Hypercomplex number / Abstract algebra / Algebra / Mathematics
Date: 2012-07-10 11:45:32
Lie groups
Leonard Eugene Dickson
Quadratic forms
Lie algebras
Orthogonal group
Representation theory
Group of Lie type
Nicolae Popescu
Hypercomplex number
Abstract algebra
Algebra
Mathematics

national academy of sciences Leonard

Add to Reading List

Source URL: www.nasonline.org

Download Document from Source Website

File Size: 1,25 MB

Share Document on Facebook

Similar Documents

Number theorists / Leonard Eugene Dickson / C. V. Durell / Calculus / Akiva Yaglom / George Pólya / Michael Spivak / Felix Klein / Mathematics / Differential geometers / Academia

Mathematics Reference Books No. Name Author

DocID: 13Ked - View Document

Guggenheim Fellows / Number theorists / Saunders Mac Lane / Abraham Adrian Albert / Garrett Birkhoff / Marshall Harvey Stone / Leonard Eugene Dickson / Algebraic topology / Category theory / Mathematics / Algebra / Abstract algebra

Book Review Saunders Mac Lane: A Mathematical Autobiography and A3 & His Algebra: How a Boy

DocID: NAf8 - View Document

Highwood /  Illinois / PS Lady Elgin / Steamships / Abraham Adrian Albert / Emmy Noether / Hyde Park /  Chicago / Leonard Eugene Dickson / Hyde Park /  London / Abstract algebra / Mathematics / Number theorists / Academia

Hyde Park History VOL. 28

DocID: 6dfE - View Document

Algebraic structures / Polynomials / Field theory / Group theory / Galois theory / Leonard Eugene Dickson / Évariste Galois / Linear algebra / Emmy Noether / Abstract algebra / Algebra / Mathematics

[removed]DICKSON ON MODERN ALGEBRA

DocID: 4Nr1 - View Document

Leonard Eugene Dickson / Number theory / Homogeneous polynomial / Musical form / Ternary form / Quadratic / Binary quadratic form / Algebra / Mathematics / Quadratic forms

I93[removed]DICKSON ON THEORY OF NUMBERS

DocID: 4NqU - View Document