<--- Back to Details
First PageDocument Content
Differential geometry / Curves / Multivariable calculus / Surfaces / Curvature / Frenet–Serret formulas / Arc length / Klein bottle / Tangent space / Geometry / Mathematical analysis / Calculus
Date: 2012-10-10 13:46:07
Differential geometry
Curves
Multivariable calculus
Surfaces
Curvature
Frenet–Serret formulas
Arc length
Klein bottle
Tangent space
Geometry
Mathematical analysis
Calculus

OctLecture 12: Multivariable Calculus Reading: Kreyszig Sections: 9.5, 9.6, 9.7

Add to Reading List

Source URL: pruffle.mit.edu

Download Document from Source Website

File Size: 767,38 KB

Share Document on Facebook

Similar Documents

Differential geometry / Curves / Multivariable calculus / Surfaces / Curvature / Frenet–Serret formulas / Arc length / Klein bottle / Tangent space / Geometry / Mathematical analysis / Calculus

OctLecture 12: Multivariable Calculus Reading: Kreyszig Sections: 9.5, 9.6, 9.7

DocID: 18VUk - View Document

Multivariable calculus / Differential geometry / Curves / Integral calculus / Analytic geometry / Frenet–Serret formulas / Arc length / Curvature / Tangent / Calculus / Mathematical analysis / Geometry

120 c W.C Carter MITFall 2007 Lecture 12

DocID: 18Mnq - View Document

Visual arts / Recreational mathematics / Origami / Differential geometry / Mathematics of paper folding / Metric geometry / Frenet–Serret formulas / Curve / Geodesic / Geometry / Mathematics / Paper folding

16th Canadian Conference on Computational Geometry, 2004 Continuous Foldability of Polygonal Paper Erik D. Demaine Satyan L. Devadoss

DocID: 18F2R - View Document

Multivariable calculus / Differential geometry / Curves / Integral calculus / Analytic geometry / Frenet–Serret formulas / Arc length / Curvature / Tangent / Calculus / Mathematical analysis / Geometry

MITFallLecture 12 c W.C Carter

DocID: 188p8 - View Document

Curves / Curvature / Multivariable calculus / Connection / Torsion of a curve / Differential geometry of curves / Torsion tensor / Frenet–Serret formulas / Arc length / Geometry / Differential geometry / Mathematical analysis

About the Space Curves Category A space curve is described by a map of an interval, [tM in, tM ax] in t-space into (x, y)-space. Each point t is mapped to a three-dimensional point P with coordinates (x(t), y(t), z(t)).

DocID: 1818J - View Document