First Page | Document Content | |
---|---|---|
![]() Date: 2009-09-12 23:05:54Mathematics Problem solving Alpha-beta pruning Negamax Minimax Transposition table Expectiminimax tree Iterative deepening depth-first search Game tree Game artificial intelligence Search algorithms Artificial intelligence | Source URL: jveness.infoDownload Document from Source WebsiteFile Size: 113,33 KBShare Document on Facebook |
![]() | THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF COMPUTER SCIENCE AND ENGINEERING Expectimax Enhancements for Stochastic Game PlayersDocID: 18GZ9 - View Document |
![]() | Monte Carlo *-Minimax Search Marc Lanctot1 , Abdallah Saffidine2 , Joel Veness3 , Christopher Archibald3 , and Mark H.M. Winands1 1 Department of Knowledge Engineering, Maastricht University, Netherlands, {marc.lanctot,DocID: 18EzI - View Document |
![]() | IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCHA Survey of Monte Carlo Tree Search Methods Cameron Browne, Member, IEEE, Edward Powley, Member, IEEE, Daniel Whitehouse, MembDocID: 18bee - View Document |
![]() | PDF DocumentDocID: 17lax - View Document |
![]() | PDF DocumentDocID: 16G7b - View Document |