<--- Back to Details
First PageDocument Content
Statistical classification / Support vector machine / Li Fei / Feature / SVM / Artificial intelligence / Computer vision / Statistics / Image processing
Date: 2012-01-10 13:32:44
Statistical classification
Support vector machine
Li Fei
Feature
SVM
Artificial intelligence
Computer vision
Statistics
Image processing

TRECVID MED[removed]Dec 2011 Amitha Perera Kitware

Add to Reading List

Source URL: www-nlpir.nist.gov

Download Document from Source Website

File Size: 1,37 MB

Share Document on Facebook

Similar Documents

SVM-Based Failure Detection of GHT Localizations T. Blaffert*a, C. Lorenz a, H. Nickisch a, J. Peters a, J. Weese a a Philips Research Laboratories, Hamburg, Germany ABSTRACT This paper addresses the localization of anat

DocID: 1vgir - View Document

Face Replacement with HOG and SVM CISFinal Project - Fall 2015 Vidur S. Bhatnagar Prerna Srivastava

DocID: 1v3Zn - View Document

Surrogate Functions for Maximizing Precision at the Top A. Structural SVM Surrogate for prec@k The structural SVM surrogate for prec@k for a set of n points {(x1 , y1 ), . . . , (xn , yn )} ∈ (Rd × {0, 1})n and model

DocID: 1uZea - View Document

SMURF: A SVM-based Incremental Anti-pattern Detection Approach Abdou Maiga1,3 , Nasir Ali1,2 , Neelesh Bhattacharya1,2 , Aminata Saban´e1,2 Yann-Ga¨el Gu´eh´eneuc1 , and Esma Aimeur3 1 Ptidej Team & 2 Soccer Lab., DG

DocID: 1uXNZ - View Document

SVM-Based Failure Detection of GHT Localizations Thomas Blaffert, Cristian Lorenz, Hannes Nickisch, Jochen Peters, Jürgen Weese Philips Research March 3, 2016

DocID: 1uzpG - View Document