<--- Back to Details
First PageDocument Content
Differential geometry / Homogeneous spaces / Riemannian geometry / Sigurdur Helgason / Leroy P. Steele Prize / Hermitian symmetric space / Symmetric space / Representation theory / Élie Cartan / Geometry / Lie groups / Mathematics
Date: 2008-03-10 12:26:09
Differential geometry
Homogeneous spaces
Riemannian geometry
Sigurdur Helgason
Leroy P. Steele Prize
Hermitian symmetric space
Symmetric space
Representation theory
Élie Cartan
Geometry
Lie groups
Mathematics

l[removed]STEELE PRIZES AWARDED

Add to Reading List

Source URL: dspace.mit.edu

Download Document from Source Website

File Size: 417,96 KB

Share Document on Facebook

Similar Documents

Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-Dimensional Balanced Allocations Gilad Asharov∗ Moni Naor†

DocID: 1tgvQ - View Document

Natural flat observer fields in spherically-symmetric space-times ROBERT MACKAY COLIN ROURKE An observer field in a space-time is a time-like unit vector field. It is natural if

DocID: 1rEJP - View Document

On a symmetric space attached to polyzeta values. Olivier Mathieu ABSTRACT Quickly converging series are given to compute polyzeta numbers ζ(r1 , . . . , rk ). The formulas involve an intricate combination of (generaliz

DocID: 1rvgL - View Document

Geometry / Mathematics / Space / Curves / Analytic geometry / Cartesian coordinate system / Dimension / Homogeneous coordinates / 3D modeling / Computer graphics / Geometric primitive / Parallel curve

Digital Styling for Designers: 3D Plane-Symmetric Freeform Curve Creation Using Sketch Interface Seok-Hyung Bae1,2 , Ryugo Kijima2 , and Won-Sup Kim3 1

DocID: 1rrZQ - View Document

Algebra / Abstract algebra / Mathematics / Algebraic topology / Homotopy theory / Highly structured ring spectrum / Spectrum / Symmetric spectrum / Model category / Thom space / E-operad / Algebraic K-theory

PROGRAM FOR THE SEMINAR ON “THOM SPECTRA AND UNITS” (AFTER ANDO-BLUMBERG-GEPNER-HOPKINS-REZK) STEFFEN SAGAVE AND MARKUS SZYMIK Introduction

DocID: 1rnkZ - View Document