<--- Back to Details
First PageDocument Content
Operator theory / Functional analysis / Linear algebra / Banach spaces / Hilbert space / Invariant subspace / Approximation property / Sequence space / Lp space / Mathematical analysis / Algebra / Mathematics
Date: 2006-05-29 09:23:51
Operator theory
Functional analysis
Linear algebra
Banach spaces
Hilbert space
Invariant subspace
Approximation property
Sequence space
Lp space
Mathematical analysis
Algebra
Mathematics

Add to Reading List

Source URL: archive.numdam.org

Download Document from Source Website

Share Document on Facebook

Similar Documents

Polynomial Time Interactive Proofs for Linear Algebra with Exponential Matrix Dimensions and Scalars Given by Polynomial Time Circuits In memory of Wen-tsun Wu–Jean-Guillaume Dumas

DocID: 1xUE0 - View Document

Concurrent computing / Computing / Computer programming / Parallel computing / Numerical linear algebra / Numerical software / Application programming interfaces / Fortran / OpenACC / Math Kernel Library / OpenMP / ScaLAPACK

1 Roadmap for the Development of a Linear Algebra Library for Exascale Computing SLATE: Software for Linear Algebra Targeting Exascale

DocID: 1xUyc - View Document

Mathematics / Algebra / Cryptography / Computational number theory / Lattice points / Linear algebra / Lattice-based cryptography / Lattice reduction / LenstraLenstraLovsz lattice basis reduction algorithm / Hermite normal form / Euclidean algorithm / Integer relation algorithm

Recent Progress in Linear Algebra and Lattice Basis Reduction Gilles Villard CNRS, ENS de Lyon, INRIA, UCBL, Université de Lyon Laboratoire LIP

DocID: 1xUmT - View Document

Numerical software / Numerical analysis / Numerical linear algebra / Mathematical software / Computing / LAPACK / Basic Linear Algebra Subprograms / Math Kernel Library / OpenMP / Graphics processing unit / Cholesky decomposition / Tile

3 Designing SLATE SLATE: Software for Linear Algebra Targeting Exascale Jakub Kurzak Panruo Wu

DocID: 1xT5s - View Document

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1vrLR - View Document