<--- Back to Details
First PageDocument Content
Mathematics / Arnoldi iteration / Lanczos algorithm / Singular value decomposition / Eigenvalues and eigenvectors / QR algorithm / Krylov subspace / Generalized minimal residual method / Bidiagonalization / Algebra / Linear algebra / Numerical linear algebra
Date: 2005-07-06 09:47:32
Mathematics
Arnoldi iteration
Lanczos algorithm
Singular value decomposition
Eigenvalues and eigenvectors
QR algorithm
Krylov subspace
Generalized minimal residual method
Bidiagonalization
Algebra
Linear algebra
Numerical linear algebra

Add to Reading List

Source URL: www.siam.org

Download Document from Source Website

File Size: 105,47 KB

Share Document on Facebook

Similar Documents

Numerical linear algebra / Mathematics / Preconditioner / Mathematical analysis / Iterative method / Generalized minimal residual method / Optimal control / Computational science

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Sparse Preconditioning for Model Predictive Control Knyazev, A.; Malyshev, A. TR2016-046

DocID: 1rdHo - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / Spectral theory / SLEPc / Eigenvalues and eigenvectors / Arnoldi iteration / Nonlinear eigenproblem / Generalized minimal residual method / Matrix

PARALLEL KRYLOV SOLVERS FOR THE POLYNOMIAL EIGENVALUE PROBLEM IN SLEPc∗ CARMEN CAMPOS† AND JOSE E. ROMAN† Abstract. Polynomial eigenvalue problems are often found in scientific computing applications. When the coef

DocID: 1qSyX - View Document

Algebra / Mathematics / Linear algebra / Numerical linear algebra / Iterative method / Generalized minimal residual method / Multigrid method / Singular value decomposition / Numerical analysis / Krylov subspace / Matrix / Finite element method

OT109_OLearyFM-A:OT109_OLearyFM-A.qxd

DocID: 1qffI - View Document

Numerical linear algebra / Krylov subspace / Generalized minimal residual method / Iterative method / Biconjugate gradient stabilized method / Preconditioner / Matrix / Lis / Sparse matrix / Conjugate gradient method / IML++ / Arnoldi iteration

Efficiency of general Krylov methods on GPUs – An experimental study Hartwig Anzt, Jack Dongarra University of Tennessee Knoxville, TN, USA {hanzt,dongarra}@icl.utk.edu

DocID: 1puu9 - View Document

Numerical linear algebra / Incomplete LU factorization / Preconditioner / Computational fluid dynamics / Iterative method / Lis / NewtonKrylov method / Schur complement / Matrix / Generalized minimal residual method / SLEPc

Comparison of parallel preconditioners for a Newton-Krylov flow solver Jason E. Hicken, Michal Osusky, and David W. Zingg 1 Introduction Analysis of the results from the AIAA Drag Prediction workshops (Mavriplis et al,

DocID: 1paEo - View Document