<--- Back to Details
First PageDocument Content
Mathematics / Arnoldi iteration / Lanczos algorithm / Singular value decomposition / Eigenvalues and eigenvectors / QR algorithm / Krylov subspace / Generalized minimal residual method / Bidiagonalization / Algebra / Linear algebra / Numerical linear algebra
Date: 2005-07-06 09:47:32
Mathematics
Arnoldi iteration
Lanczos algorithm
Singular value decomposition
Eigenvalues and eigenvectors
QR algorithm
Krylov subspace
Generalized minimal residual method
Bidiagonalization
Algebra
Linear algebra
Numerical linear algebra

Add to Reading List

Source URL: www.siam.org

Download Document from Source Website

File Size: 105,47 KB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / Spectral theory / SLEPc / Eigenvalues and eigenvectors / Arnoldi iteration / Nonlinear eigenproblem / Generalized minimal residual method / Matrix

PARALLEL KRYLOV SOLVERS FOR THE POLYNOMIAL EIGENVALUE PROBLEM IN SLEPc∗ CARMEN CAMPOS† AND JOSE E. ROMAN† Abstract. Polynomial eigenvalue problems are often found in scientific computing applications. When the coef

DocID: 1qSyX - View Document

Numerical linear algebra / Krylov subspace / Generalized minimal residual method / Iterative method / Biconjugate gradient stabilized method / Preconditioner / Matrix / Lis / Sparse matrix / Conjugate gradient method / IML++ / Arnoldi iteration

Efficiency of general Krylov methods on GPUs – An experimental study Hartwig Anzt, Jack Dongarra University of Tennessee Knoxville, TN, USA {hanzt,dongarra}@icl.utk.edu

DocID: 1puu9 - View Document

Mathematics / Eigenvalues and eigenvectors / Eigenvalue algorithm / Preconditioner / QR algorithm / Lanczos algorithm / Regularization / Arnoldi iteration / Eigendecomposition of a matrix / Algebra / Linear algebra / Numerical linear algebra

DELFT UNIVERSITY OF TECHNOLOGY REPORTComputational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

DocID: 1fIEt - View Document

Bifurcation theory / Arnoldi iteration / Pitchfork bifurcation / Eigenvalue algorithm / Eigenvalues and eigenvectors / Numerical continuation / Algebra / Mathematics / Numerical linear algebra

#240 Scalable bifurcation analysis algorithms for large parallel applications Andrew G. Salinger a,Ł , Roger P. Pawlowski a , Louis A. Romero b a

DocID: 18MeF - View Document

Mathematics / Arnoldi iteration / Generalized minimal residual method / Krylov subspace / Eigenvalue algorithm / Eigenvalues and eigenvectors / Iterative method / Matrix / ARPACK / Algebra / Numerical linear algebra / Linear algebra

Massively parallel linear stability analysis with P ARPACK for 3D uid ow modeled with MPSalsa? R.B. Lehoucq1 and A. G. Salinger1 Sandia National Laboratories?? P.O. Box 5800, MS 1110

DocID: 18d8y - View Document