<--- Back to Details
First PageDocument Content
Multivariate statistics / Econometrics / Structural equation models / Latent variable model / Latent variable / Structural equation modeling / Latent class model / Confirmatory factor analysis / Factor analysis / Statistics / Statistical models / Psychometrics
Date: 2005-09-12 12:33:53
Multivariate statistics
Econometrics
Structural equation models
Latent variable model
Latent variable
Structural equation modeling
Latent class model
Confirmatory factor analysis
Factor analysis
Statistics
Statistical models
Psychometrics

Add to Reading List

Source URL: rhowell.ba.ttu.edu

Download Document from Source Website

File Size: 144,95 KB

Share Document on Facebook

Similar Documents

A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues arXiv:1605.06069v3 [cs.CL] 14 JunIulian V. Serban* , Alessandro Sordoni ‡ , Ryan Lowe , Laurent Charlin , Joelle Pineau ,

DocID: 1t2F1 - View Document

A Latent Variable Model of Synchronous Syntactic-Semantic Parsing for Multiple Languages Andrea Gesmundo Univ Geneva Dept Computer Sci

DocID: 1t0QV - View Document

Statistics / Probability / Statistical natural language processing / Probability distributions / Estimation theory / Regression analysis / Dynamic topic model / Latent Dirichlet allocation / Variational Bayesian methods / Mixture model / Topic model / Normal distribution

A Latent Variable Model for Geographic Lexical Variation Jacob Eisenstein Brendan O’Connor Noah A. Smith Eric P. Xing School of Computer Science Carnegie Mellon University

DocID: 1qUTR - View Document

Statistics / Statistical models / Bayesian network / Latent variable / Variational Bayesian methods / Independent component analysis / Expectationmaximization algorithm / Generative model / Principal component analysis / Bayesian inference / Normal distribution / Mixture model

Variational Bayesian Learning of Cooperative Vector Quantizer Model - The Theory  

DocID: 1qS4X - View Document

Statistics / Psychometrics / Statistical models / Educational psychology / Educational research / Psychological testing / Item response theory / Progress in International Reading Literacy Study / Latent variable / Factor analysis / Graphical model / Expectationmaximization algorithm

Hierarchical factor item response theory models for PIRLS: capturing clustering effects at multiple levels 1 Frank Rijmen

DocID: 1qFlQ - View Document