<--- Back to Details
First PageDocument Content
Mathematics / PageRank / Google matrix / Markov chain / Eigenvalues and eigenvectors / Matrix / Stochastic matrix / Power iteration / Algebra / Markov models / Linear algebra
Date: 2005-05-10 14:08:20
Mathematics
PageRank
Google matrix
Markov chain
Eigenvalues and eigenvectors
Matrix
Stochastic matrix
Power iteration
Algebra
Markov models
Linear algebra

Add to Reading List

Source URL: www4.ncsu.edu

Download Document from Source Website

File Size: 555,87 KB

Share Document on Facebook

Similar Documents

Polynomial Time Interactive Proofs for Linear Algebra with Exponential Matrix Dimensions and Scalars Given by Polynomial Time Circuits In memory of Wen-tsun Wu–Jean-Guillaume Dumas

DocID: 1xUE0 - View Document

Concurrent computing / Computing / Computer programming / Parallel computing / Numerical linear algebra / Numerical software / Application programming interfaces / Fortran / OpenACC / Math Kernel Library / OpenMP / ScaLAPACK

1 Roadmap for the Development of a Linear Algebra Library for Exascale Computing SLATE: Software for Linear Algebra Targeting Exascale

DocID: 1xUyc - View Document

Mathematics / Algebra / Cryptography / Computational number theory / Lattice points / Linear algebra / Lattice-based cryptography / Lattice reduction / LenstraLenstraLovsz lattice basis reduction algorithm / Hermite normal form / Euclidean algorithm / Integer relation algorithm

Recent Progress in Linear Algebra and Lattice Basis Reduction Gilles Villard CNRS, ENS de Lyon, INRIA, UCBL, Université de Lyon Laboratoire LIP

DocID: 1xUmT - View Document

Numerical software / Numerical analysis / Numerical linear algebra / Mathematical software / Computing / LAPACK / Basic Linear Algebra Subprograms / Math Kernel Library / OpenMP / Graphics processing unit / Cholesky decomposition / Tile

3 Designing SLATE SLATE: Software for Linear Algebra Targeting Exascale Jakub Kurzak Panruo Wu

DocID: 1xT5s - View Document

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1vrLR - View Document