<--- Back to Details
First PageDocument Content
Econometrics / Market research / Simple random sample / Random sample / Statistical inference / Statistical parameter / Sample / Statistical power / Linear regression / Statistics / Sampling / Statistical theory
Date: 2013-06-25 13:02:44
Econometrics
Market research
Simple random sample
Random sample
Statistical inference
Statistical parameter
Sample
Statistical power
Linear regression
Statistics
Sampling
Statistical theory

VERY PRELIMINARY - DO NOT CITE OR QUOTE

Add to Reading List

Source URL: sites.uci.edu

Download Document from Source Website

File Size: 544,25 KB

Share Document on Facebook

Similar Documents

Vector Derivatives, Gradients, and Generalized Gradient Descent Algorithms ECE 275A – Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego

DocID: 1uTsJ - View Document

Parametric Statistical Modeling ECE 275A – Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego

DocID: 1uO0C - View Document

Using Paraphrases for Parameter Tuning in Statistical Machine Translation Nitin Madnani, Necip Fazil Ayan, Philip Resnik & Bonnie J. Dorr Institute for Advanced Computer Studies University of Maryland College Park, MD, 2

DocID: 1uggY - View Document

Prediction / Statistical forecasting / Forecasting / Time series analysis / Forecast error / Forecast model / FORECAST / Economy

Context-Aware Parameter Estimation for Forecast Models in the Energy Domain Lars Dannecker1,2, Robert Schulze1, Matthias Böhm2, Wolfgang Lehner2, Gregor Hackenbroich1 1SAP Research Dresden, 2Technische Universität Dres

DocID: 1rnIj - View Document

Statistics / Estimation theory / Statistical theory / Probability distributions / Statistical inference / Bias of an estimator / Maximum likelihood estimation / Efficient estimator / Estimator / Uniform distribution / Normal distribution / Exponential distribution

Chapter 6 Parameter Estimation Take a random variable x described by a pdf f (x): the sample space is defined to be the set of all possible values of x. The set of n independent measurements of the random variable x, {x

DocID: 1rnil - View Document