<--- Back to Details
First PageDocument Content
Information science / Information retrieval / Information / Machine learning / Natural language processing / Data mining / Index / Document classification / Statistical classification / Document clustering / Search engine indexing / Enterprise search
Date: 2016-03-02 03:51:47
Information science
Information retrieval
Information
Machine learning
Natural language processing
Data mining
Index
Document classification
Statistical classification
Document clustering
Search engine indexing
Enterprise search

Datasheet-Topic-Finder_EN.indd

Add to Reading List

Source URL: www.intrafind.com

Download Document from Source Website

File Size: 847,21 KB

Share Document on Facebook

Similar Documents

Recent Developments in Document Clustering Nicholas O. Andrews and Edward A. Fox Department of Computer Science, Virginia Tech, Blacksburg, VA 24060 {nandrews, fox}@vt.edu October 16, 2007

DocID: 1thA2 - View Document

Combining a Double Clustering Approach with Sentence Simplification to Produce Highly Informative Multi-document Summaries Sara Botelho Silveira and Ant´onio Branco University of Lisbon Edif´ıcio C6, Departamento de

DocID: 1stOV - View Document

Using a Wikipedia-based Semantic Relatedness Measure for Document Clustering Majid Yazdani Idiap Research Institute and EPFL Centre du Parc, Rue MarconiMartigny, Switzerland

DocID: 1sjIn - View Document

Software / Computing / Portable media players / Music information retrieval / Music software / IPod software / Last.fm / Playlist / Non-negative matrix factorization / Document clustering / IPod / Recommender system

One-Touch Access to Music on Mobile Devices Dominik Schnitzer1,2 ,Tim Pohle1 , Peter Knees1 , and Gerhard Widmer1,2 1 Department of Computational Perception, Johannes Kepler University Linz, Austria 2

DocID: 1rtSc - View Document

Statistics / Cluster analysis / Information science / Data analysis / Data mining / Geostatistics / Hierarchical clustering / K-means clustering / Document clustering / Biclustering / Consensus clustering / Determining the number of clusters in a data set

V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg and Julia Hirschberg Department of Computer Science Columbia University New York, NY 10027

DocID: 1rtvl - View Document