<--- Back to Details
First PageDocument Content
Mathematical analysis / Map projections / Mathematics / Partial differential equations / Atomic physics / Rotational symmetry / Mercator projection / Spherical harmonics
Date: 2005-08-18 14:58:08
Mathematical analysis
Map projections
Mathematics
Partial differential equations
Atomic physics
Rotational symmetry
Mercator projection
Spherical harmonics

AtlasOfSphericalHarmonics.nb

Add to Reading List

Source URL: quantum.bu.edu

Download Document from Source Website

File Size: 3,26 MB

Share Document on Facebook

Similar Documents

Physics / Engineering / Mechanics / Robot control / Classical mechanics / Rotational symmetry / Aircraft instruments / Theory of relativity / Humanoid robot / Robotics / Kalman filter / Inverted pendulum

Humanoid Flexibility Deformation Can Be Efficiently Estimated Using Only Inertial Measurement Units and Contact Information Mehdi Benallegue1,2 and Florent Lamiraux1,2 Abstract— Most robots are today controlled as bein

DocID: 1rtM3 - View Document

Rigid bodies / Mathematical analysis / Rigid body dynamics / Rotational symmetry / Mechanics / Physics

Dynamic Delta Modeling∗ Michiel Helvensteijn CWI, Amsterdam Leiden University The Netherlands

DocID: 1rlhB - View Document

Trapped surface / Theoretical physics / Atomic physics / Rotational symmetry / Physics

Stability of marginally outer trapped surfaces and applications

DocID: 1rjkB - View Document

Physics / Atomic physics / Spintronics / Quantum field theory / Rotational symmetry / Physical quantities / Spin / Resonance / Electron / Dirac equation / Wave function / Magnetic moment

Microsoft PowerPoint - Adv_AP_3

DocID: 1rhz9 - View Document

Physics / Quantum mechanics / Atomic physics / Nuclear magnetic resonance / Physical quantities / Rotational symmetry / Emerging technologies / Electron paramagnetic resonance / Quantum computing / J-coupling / Spin / Relaxation

PHYSICAL REVIEW B 69, 073302 共2004兲 Nuclear spin relaxation probed by a single quantum dot A. K. Hu¨ttel,1 J. Weber,1 A. W. Holleitner,1 D. Weinmann,2 K. Eberl,3 and R. H. Blick1,4 1

DocID: 1rhsD - View Document