<--- Back to Details
First PageDocument Content
Preconditioner / Sparse matrix / Conjugate gradient method / Cholesky decomposition / Lis / Multigrid method / QR decomposition / LU decomposition / Incomplete LU factorization / Numerical linear algebra / Numerical analysis / Mathematics
Date: 2012-04-17 03:51:43
Preconditioner
Sparse matrix
Conjugate gradient method
Cholesky decomposition
Lis
Multigrid method
QR decomposition
LU decomposition
Incomplete LU factorization
Numerical linear algebra
Numerical analysis
Mathematics

Sparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs

Add to Reading List

Source URL: www.iue.tuwien.ac.at

Download Document from Source Website

File Size: 125,45 KB

Share Document on Facebook

Similar Documents

Euclidean lattices and QR decomposition Householder and LLL Householder inside LLL Conclusion H-LLL: Using Householder Inside LLL

DocID: 1szVc - View Document

An Approach to Automatic Tuning for Parallel Householder QR Decomposition Takeshi Fukaya1) , Yusaku Yamamoto2) , Shao-Liang Zhang3) 1),2),3) Graduate School of Engineering, Nagoya University 1) ya-u.a

DocID: 1svxQ - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / Regression analysis / Least squares / Singular value decomposition / QR decomposition / Matrix / Rank / Singular value

Leverage scores Petros Drineas Rensselaer Polytechnic Institute Computer Science Department To access my web page:

DocID: 1rk1k - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Sparse matrices / Matrix theory / Matrices / Singular value decomposition / Bidiagonalization / Bidiagonal matrix / QR algorithm / Orthogonal matrix

Computing the Complete CS Decomposition Brian D. Sutton∗ May 20, 2008 Abstract An algorithm for computing the complete CS decomposition of a partitioned unitary matrix is developed. Although the existence of the CS dec

DocID: 1qWf4 - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / MoorePenrose pseudoinverse / Singular value decomposition / Matrix / Rank / Equation solving / QR decomposition / Generalized inverse

Math 515 Fall, 2014 Homework 4, due Thursday, OctoberSuppose A ∈ Rm×n , m ≥ n, and rank(A) = n; that is, A has full rank. Consider the linear system: 

DocID: 1qrak - View Document