<--- Back to Details
First PageDocument Content
NP-complete problems / Minimum spanning tree / Vertex cover / Clique problem / Travelling salesman problem / Independent set / Shortest path problem / NP-complete / Matching / Theoretical computer science / Computational complexity theory / Mathematics
Date: 2006-10-03 05:00:11
NP-complete problems
Minimum spanning tree
Vertex cover
Clique problem
Travelling salesman problem
Independent set
Shortest path problem
NP-complete
Matching
Theoretical computer science
Computational complexity theory
Mathematics

Chapter 8 NP-complete problems

Add to Reading List

Source URL: www.cs.berkeley.edu

Download Document from Source Website

File Size: 361,76 KB

Share Document on Facebook

Similar Documents

EE365: Deterministic Finite State Control Deterministic optimal control Shortest path problem Dynamic programming Examples

DocID: 1vg0M - View Document

We approach the problem of computing geometric centralities, such as closeness and harmonic centrality, on very large graphs; traditionally this task requires an all-pairs shortest-path computation in the exact case, or

DocID: 1sauD - View Document

We approach the problem of computing geometric centralities, such as closeness and harmonic centrality, on very large graphs; traditionally this task requires an all-pairs shortest-path computation in the exact case, or

DocID: 1rNo2 - View Document

Network architecture / Computing / Fiber-optic communications / Network protocols / Computer architecture / Routing / Automatically switched optical network / Synchronous optical networking / Bandwidth / Multiprotocol Label Switching / Shortest path problem

Improving Restoration Success in Mesh Optical Networks Fang Yu 1, Rakesh Sinha2, Dongmei Wang3, Guangzhi Li3, John Strand2, Robert Doverspike2, Charles Kalmanek 3, and Bruce Cortez 2 1 EECS Department, UC Berkeley, Berke

DocID: 1rrH0 - View Document

Graph theory / Network flow / Mathematics / EdmondsKarp algorithm / Flow network / Maximum flow problem / FordFulkerson algorithm / Cut / Graph traversal / Minimum cut / Shortest path problem / Max-flow min-cut theorem

CS261: A Second Course in Algorithms Lecture #2: Augmenting Path Algorithms for Maximum Flow∗ Tim Roughgarden† January 7, 2016

DocID: 1rn0k - View Document