<--- Back to Details
First PageDocument Content
Regression analysis / Statistics / Estimation theory / Parametric statistics / Statistical theory / Least squares / Linear regression / Coefficient of determination / Simple linear regression / Degrees of freedom / Errors and residuals / Polynomial regression
Date: 2012-10-30 01:47:07
Regression analysis
Statistics
Estimation theory
Parametric statistics
Statistical theory
Least squares
Linear regression
Coefficient of determination
Simple linear regression
Degrees of freedom
Errors and residuals
Polynomial regression

Simple RegressionMultiple Regression ........

Add to Reading List

Source URL: genome.sph.umich.edu

Download Document from Source Website

File Size: 369,18 KB

Share Document on Facebook

Similar Documents

Graham Neubig – Non-parametric Bayesian Statistics Non-parametric Bayesian Statistics Graham Neubig

DocID: 1uQOM - View Document

Automatic Selection of Compiler Options Using Non-parametric Inferential Statistics Masayo Haneda Peter M.W. Knijnenburg Harry A.G. Wijshoff

DocID: 1tDtm - View Document

Proceedings of the 60th ISI World Statistics Congress, 26-31 July 2015, Rio de Janeiro, Brazil p.3981 Parametric or nonparametric: the FIC approach for stationary time series Gudmund Horn Hermansen*

DocID: 1tnWq - View Document

Statistics / Regression analysis / Estimation theory / Parametric statistics / Least squares / Linear regression / Ordinary least squares / Incremental validity / SAT / University of California / Variance / T-statistic

Microsoft Word - satpaper.forjoe.finalrevision.doc

DocID: 1rnIq - View Document

Statistics / Estimation theory / Regression analysis / Statistical theory / Parametric statistics / Signal processing / Ordinary least squares / Autocorrelation / Estimator / Generalized method of moments / Robust statistics / Linear regression

On the finite sample properties of pre-test estimators of spatial models Gianfranco Piras∗ Ingmar R. Prucha†

DocID: 1rm2t - View Document