<--- Back to Details
First PageDocument Content
Finite groups / Classification of finite simple groups / Simple group / Feit–Thompson theorem / Quasithin group / Signalizer functor / Solvable group / Representation theory / Group of Lie type / Abstract algebra / Algebra / Group theory
Date: 2004-06-30 16:48:15
Finite groups
Classification of finite simple groups
Simple group
Feit–Thompson theorem
Quasithin group
Signalizer functor
Solvable group
Representation theory
Group of Lie type
Abstract algebra
Algebra
Group theory

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 395,23 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Algebraic number theory / Scheme theory / Field theory / Algebraic geometry / Lie algebra / Galois module / Group scheme / Ring / Sheaf

35 Documenta Math. On the Image of l-Adic Galois Representations for Abelian Varieties of Type I and II

DocID: 1rjDX - View Document

Algebra / Abstract algebra / Mathematics / Algebraic number theory / Scheme theory / Field theory / Algebraic geometry / Lie algebra / Galois module / Group scheme / Ring / Sheaf

35 Documenta Math. On the Image of l-Adic Galois Representations for Abelian Varieties of Type I and II

DocID: 1qfUO - View Document

Representation theory / DeligneLusztig theory / Unipotent / Springer correspondence / Sheaf / Cuspidal representation / Reductive group

293 Doc. Math. J. DMV On the Average Values of the Irreducible Characters of Finite Groups of Lie Type

DocID: 1plI5 - View Document

Algebra / Abstract algebra / Group theory / Finite groups / Sylow theorems / P-group / Group extension / Automorphism / Abelian group / PSL / Center / Group of Lie type

AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS OF LIE TYPE CARLES BROTO, JESPER M. MØLLER, AND BOB OLIVER Abstract. For a finite group G of Lie type and a prime p, we compare the automorphism groups of the fusi

DocID: 1n57G - View Document

Mathematics / Von Neumann algebras / Functional analysis / Lie algebras / Operator algebra / Amenable group / John von Neumann / Cartan subalgebra / Hyperfinite type II factor / Mathematical analysis / Abstract algebra / Operator theory

Department of Mathematics, University of California San Diego ******************************* Operator Algebras Seminar Cyril Houdayer

DocID: 1fNkN - View Document