<--- Back to Details
First PageDocument Content
Polynomials / Knot theory / Jones polynomial / HOMFLY polynomial / Finite type invariant / Kauffman polynomial / Bracket polynomial
Date: 2001-01-17 12:26:44
Polynomials
Knot theory
Jones polynomial
HOMFLY polynomial
Finite type invariant
Kauffman polynomial
Bracket polynomial

275 Documenta Math. The Number of Independent Vassiliev Invariants in

Add to Reading List

Source URL: www.math.uiuc.edu

Download Document from Source Website

File Size: 234,39 KB

Share Document on Facebook

Similar Documents

Topology / Knot theory / Knot invariants / Geometric topology / Surgery theory / 3-manifolds / Capped grope / Cobordism / Finite type invariant / Kontsevich invariant / Knot / Clasper

Topology – 156 www.elsevier.com/locate/top Grope cobordism of classical knots James Conanta , Peter Teichnerb;∗ b

DocID: 1r3Vt - View Document

Topology / Knot theory / Geometric topology / Knot invariants / 3-manifolds / Surgery theory / Tim Cochran / Finite type invariant / Knot complement / Capped grope / Arf invariant / Cobordism

ICM 2002 · Vol. II · 437–446 Knots, von Neumann Signatures, and Grope Cobordism Peter Teichner∗

DocID: 1qRKK - View Document

Mathematics / Mathematical analysis / Markov processes / Functional analysis / Combinatorics on words / Smooth functions / Dynamical system / Distribution / Valuation / Reversible cellular automaton / Subshift of finite type / Cellular automaton

Conservation Laws and Invariant Measures in Surjective Cellular Automata Jarkko Kari1† and Siamak Taati2‡ 1 2

DocID: 1pUA6 - View Document

Polynomials / Knot theory / Jones polynomial / HOMFLY polynomial / Finite type invariant / Kauffman polynomial / Bracket polynomial

275 Documenta Math. The Number of Independent Vassiliev Invariants in

DocID: 1p9YF - View Document

String theory / Symplectic topology / Finite type invariant / Manifold / Invariant / Stable map / Emmy Noether

Black and White Local Invariants of Mappings from Surfaces into Three-Space Kevin Houston School of Mathematics, University of Leeds, Leeds, LS2 9JT, U.K. e-mail:

DocID: 1p1NP - View Document