<--- Back to Details
First PageDocument Content
Information science / Semantic Web / Computational linguistics / Ontology / Knowledge representation / Semantic similarity / Description logic / Knowledge representation and reasoning / Cyc / Science / Statistics / Knowledge
Date: 2007-06-21 09:04:51
Information science
Semantic Web
Computational linguistics
Ontology
Knowledge representation
Semantic similarity
Description logic
Knowledge representation and reasoning
Cyc
Science
Statistics
Knowledge

Similarity-based Learning Methods for the Semantic Web Claudia d’Amato

Add to Reading List

Source URL: www.di.uniba.it

Download Document from Source Website

File Size: 1,53 MB

Share Document on Facebook

Similar Documents

SemEval-2016 Task 2: Interpretable Semantic Textual Similarity ˜ Eneko Agirre∗, Aitor Gonzalez-Agirre, Inigo Lopez-Gazpio Montse Maritxalar, German Rigau and Larraitz Uria IXA NLP group, University of the Basque Count

DocID: 1uHUP - View Document

Semantic Similarity Measurement and Geospatial Applications∗ Krzysztof Janowicz Institute for Geoinformatics

DocID: 1u7mE - View Document

Similarity judgments reflect both language and cross-language tendencies: Evidence from two semantic domains Naveen Khetarpal ()a Asifa Majid ()b Barbara Malt (barbara.malt@lehigh.

DocID: 1tPPa - View Document

SimiHawk at SemEval-2016 Task 1: A Deep Ensemble System for Semantic Textual Similarity Peter Potash∗ , William Boag∗ , Alexey Romanov∗, Vasili Ramanishka, Anna Rumshisky Dept. of Computer Science University of Mas

DocID: 1tBys - View Document

A Study of Hybrid Similarity Measures for Semantic Relation Extraction Alexander Panchenko and Olga Morozova Center for Natural Language Processing (CENTAL) Universit´e catholique de Louvain, Belgium {alexander.panchen

DocID: 1tp4u - View Document