<--- Back to Details
First PageDocument Content
Algebra / Abstract algebra / Mathematics / Ring theory / Homotopy theory / Algebraic topology / Category theory / Monoidal categories / Simplicial set / Model category / Simplicial commutative ring / Chain complex
Date: 2003-11-07 09:15:51
Algebra
Abstract algebra
Mathematics
Ring theory
Homotopy theory
Algebraic topology
Category theory
Monoidal categories
Simplicial set
Model category
Simplicial commutative ring
Chain complex

287 ISSNon-lineprinted) Algebraic & Geometric Topology Volume–334

Add to Reading List

Source URL: www.math.uni-bonn.de

Download Document from Source Website

File Size: 349,70 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Ring theory / Homotopy theory / Algebraic topology / Category theory / Monoidal categories / Simplicial set / Model category / Simplicial commutative ring / Chain complex

287 ISSNon-lineprinted) Algebraic & Geometric Topology Volume–334

DocID: 1qb45 - View Document

Algebraic topology / Commutative algebra / Algebraic combinatorics / Homotopy theory / Topological spaces / Stanley–Reisner ring / Combinatorial commutative algebra / Cohomology / Simplicial complex / Abstract algebra / Topology / Algebra

Contemporary Mathematics Topological Cohen–Macaulay criteria for monomial ideals Ezra Miller Introduction

DocID: 1ahni - View Document

Commutative algebra / Algebraic geometry / Algebraic combinatorics / Algebraic topology / Topological spaces / Cohen–Macaulay ring / Stanley–Reisner ring / Combinatorial commutative algebra / Simplicial complex / Abstract algebra / Mathematics / Algebra

Reciprocal domains and Cohen–Macaulay d-complexes in Rd Ezra Miller∗ and Victor Reiner∗ School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA , Submitted: S

DocID: 1a14T - View Document

Homotopy theory / Fiber bundles / Group actions / Category theory / Algebraic topology / Simplicial set / Classifying space / Functor / Universal bundle / Abstract algebra / Topology / Algebra

The Bar Construction Let k be a commutative ring and let A be a k-algebra. Let X be a right module over A and let Y be a left module over A. Then we can construct a simplicial k-module {Bn (X, A, Y )}∞ n=0 whose ⊗n n

DocID: RdDa - View Document

Commutative algebra / Algebraic combinatorics / Ring theory / Polynomials / Stanley–Reisner ring / Hilbert series and Hilbert polynomial / Monomial / Simplicial complex / Homogeneous coordinate ring / Abstract algebra / Mathematics / Algebra

Hilbert Functions of Monomial Algebras

DocID: 4y4J - View Document