<--- Back to Details
First PageDocument Content
Mechanics / Fourier analysis / Integral transforms / Joseph Fourier / Statistical mechanics / Fourier transform / Harmonic oscillator / Correlation function / Normal mode / Mathematical analysis / Physics / Ordinary differential equations
Date: 2013-03-09 18:20:30
Mechanics
Fourier analysis
Integral transforms
Joseph Fourier
Statistical mechanics
Fourier transform
Harmonic oscillator
Correlation function
Normal mode
Mathematical analysis
Physics
Ordinary differential equations

Microsoft Word - Problem set 4

Add to Reading List

Source URL: www.chemistry2011.org

Download Document from Source Website

File Size: 48,88 KB

Share Document on Facebook

Similar Documents

The Journal of Fourier Analysis and Applications Moments of the Rudin-Shapiro Polynomials Christophe Doche, and Laurent Habsieger Communicated by Hans G. Feichtinger

DocID: 1vewr - View Document

IEEE TRANSACTIONS ON INFORMATION D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: Extension to many dimensions; Generalized prolate spheroidal functions,” Bell Syst. Tech. J., vol

DocID: 1v1ML - View Document

FOURIER ANALYSIS AND RELATED TOPICS BANACH CENTER PUBLICATIONS, VOLUME 56 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2002

DocID: 1uBqy - View Document

Microsoft Word - Fourier analysis of the P53-MDM2 system - revised.doc

DocID: 1ul1Q - View Document

Uncertainty Principles for Fourier Multipliers Michael Northington, Georgia Institute of Technology Many questions in time-frequency analysis can be reduced to properties of a sequence of complex exponentials in certain

DocID: 1u9xH - View Document