<--- Back to Details
First PageDocument Content
Mathematical analysis / Differential topology / Curvature / Lie groups / Finsler manifold / Riemannian manifold / Exponential map / Geodesic / Sectional curvature / Differential geometry / Geometry / Riemannian geometry
Date: 2014-07-09 01:46:00
Mathematical analysis
Differential topology
Curvature
Lie groups
Finsler manifold
Riemannian manifold
Exponential map
Geodesic
Sectional curvature
Differential geometry
Geometry
Riemannian geometry

arXiv:1407.2087v1 [math.HO] 3 Jul 2014

Add to Reading List

Source URL: www.math.uni-bonn.de

Download Document from Source Website

File Size: 50,27 KB

Share Document on Facebook

Similar Documents

AN EQUIVARIANT CW -COMPLEX FOR THE FREE LOOP SPACE OF A FINSLER MANIFOLD HANS-BERT RADEMACHER Abstract. We consider a compact manifold M with a bumpy Finsler metric. The free loop space Λ of M carries a canonical action

DocID: 1sNfe - View Document

Theoretical physics / Mathematical analysis / Topology / Differential geometry / Differential topology / Connection / Finsler geometry / Riemannian manifold / Spray / Diffeomorphism / Tangent bundle / Immersion

217 Documenta Math. Vanishing Geodesic Distance on Spaces of Submanifolds and Diffeomorphisms

DocID: 1qY5f - View Document

Geometry / Riemannian geometry / Differential geometry / Connection / Theoretical physics / Curvature / Bernhard Riemann / Levi-Civita connection / Geodesic / Torsion tensor / Finsler manifold / Fundamental theorem of Riemannian geometry

Closed Geodesics and the Free Loop Space Hans-Bert Rademacher (Universit¨ at Leipzig) Workshop on Symplectic Dynamics and Hamiltonian Systems,

DocID: 1qXDy - View Document

Differential geometry / Geodesic / Finsler geometry / Riemannian geometry / Curvature / Spray / Finsler manifold

Geodesics in standard stationary spacetimes and Lagrangian systems Anna Valeria Germinario Universit` a di Bari – Italy IV International Meeting on Lorentzian Geometry

DocID: 1pEX5 - View Document

Riemannian geometry / Curvature / Finsler geometry / Finsler manifold / Riemannian manifold / Foliation / Manifold / Codimension / Ricci curvature

Integral formulae for codimension-one foliated Finsler manifolds Vladimir Rovenski (E-mail:

DocID: 1pDWR - View Document