<--- Back to Details
First PageDocument Content
Riemannian geometry / Metric geometry / Homogeneous spaces / Hadamard space / Sectional curvature / Symmetric space / Hadamard manifold / Geodesic / Riemannian manifold / Geometry / Differential geometry / Curvature
Date: 2011-01-17 08:09:59
Riemannian geometry
Metric geometry
Homogeneous spaces
Hadamard space
Sectional curvature
Symmetric space
Hadamard manifold
Geodesic
Riemannian manifold
Geometry
Differential geometry
Curvature

LECTURES ON SPACES OF NONPOSITIVE CURVATURE Werner Ballmann

Add to Reading List

Source URL: people.mpim-bonn.mpg.de

Download Document from Source Website

File Size: 798,79 KB

Share Document on Facebook

Similar Documents

Searchable Symmetric Encryption: Optimal Locality in Linear Space via Two-Dimensional Balanced Allocations Gilad Asharov∗ Moni Naor†

DocID: 1tgvQ - View Document

Natural flat observer fields in spherically-symmetric space-times ROBERT MACKAY COLIN ROURKE An observer field in a space-time is a time-like unit vector field. It is natural if

DocID: 1rEJP - View Document

On a symmetric space attached to polyzeta values. Olivier Mathieu ABSTRACT Quickly converging series are given to compute polyzeta numbers ζ(r1 , . . . , rk ). The formulas involve an intricate combination of (generaliz

DocID: 1rvgL - View Document

Geometry / Mathematics / Space / Curves / Analytic geometry / Cartesian coordinate system / Dimension / Homogeneous coordinates / 3D modeling / Computer graphics / Geometric primitive / Parallel curve

Digital Styling for Designers: 3D Plane-Symmetric Freeform Curve Creation Using Sketch Interface Seok-Hyung Bae1,2 , Ryugo Kijima2 , and Won-Sup Kim3 1

DocID: 1rrZQ - View Document

Algebra / Abstract algebra / Mathematics / Algebraic topology / Homotopy theory / Highly structured ring spectrum / Spectrum / Symmetric spectrum / Model category / Thom space / E-operad / Algebraic K-theory

PROGRAM FOR THE SEMINAR ON “THOM SPECTRA AND UNITS” (AFTER ANDO-BLUMBERG-GEPNER-HOPKINS-REZK) STEFFEN SAGAVE AND MARKUS SZYMIK Introduction

DocID: 1rnkZ - View Document