<--- Back to Details
First PageDocument Content
Free statistical software / NumPy / Quantitative analyst / SciPy / Pandas / Numba / Python / Matplotlib / QuantLib / Scikit-learn
Date: 2016-05-02 04:33:59
Free statistical software
NumPy
Quantitative analyst
SciPy
Pandas
Numba
Python
Matplotlib
QuantLib
Scikit-learn

43-44_Cover story_Section6_Mar16_final.indd

Add to Reading List

Source URL: hilpisch.com

Download Document from Source Website

File Size: 483,52 KB

Share Document on Facebook

Similar Documents

Machine learning / Artificial intelligence / Cognitive science / Cybernetics / Artificial neural networks / Free statistical software / Deep learning / Computational neuroscience / Conditional random field / Scikit-learn / Boltzmann machine

Andreas Christian Müller Curriculum Vitae Address: 156 East 2nd Street, New York, NY Phone: +Email:

DocID: 1ritG - View Document

Free statistical software / NumPy / Quantitative analyst / SciPy / Pandas / Numba / Python / Matplotlib / QuantLib / Scikit-learn

43-44_Cover story_Section6_Mar16_final.indd

DocID: 1pEWx - View Document

arXiv:1309.0238v1 [cs.LG] 1 SepAPI design for machine learning software: experiences from the scikit-learn project Lars Buitinck1 , Gilles Louppe2 , Mathieu Blondel3 , Fabian Pedregosa4, Andreas C. M¨

DocID: 1drCn - View Document

Ethology / Bird vocalization / Chirp / Scikit-learn / Feature / Noise reduction / Time series / Segmentation / Noise / Image processing / Statistics / Signal processing

Feature design for multilabel bird song classification in noise (NIPS4B challenge) Dan Stowell and Mark D. Plumbley Centre for Digital Music, Queen Mary University of London, London, UK

DocID: 19hG0 - View Document

Free statistical software / Data mining / Scikit-learn / Mlpy / Orange / Array programming languages / Support vector machine / Feature selection / Decision tree learning / Statistics / Software / Machine learning

Journal of Machine Learning Research2353 Submitted 3/13; Published 8/13 Orange: Data Mining Toolbox in Python Janez Demˇsar

DocID: 18R4y - View Document