<--- Back to Details
First PageDocument Content
Stochastic processes / Critical phenomena / Lattice models / Statistical mechanics / Phase transitions / Percolation theory / Schramm–Loewner evolution / Michael Aizenman / Brownian motion / Physics / Statistics / Probability and statistics
Date: 2012-03-29 09:17:13
Stochastic processes
Critical phenomena
Lattice models
Statistical mechanics
Phase transitions
Percolation theory
Schramm–Loewner evolution
Michael Aizenman
Brownian motion
Physics
Statistics
Probability and statistics

Michael Aizenman Stochastic geometry and interacting fields

Add to Reading List

Source URL: www.nieuwarchief.nl

Download Document from Source Website

File Size: 143,28 KB

Share Document on Facebook

Similar Documents

Illinois Geometry Lab Percolation Theory Authors: Thomas Mahoney

DocID: 1s3wE - View Document

1 A combinatorial application of quantum information in percolation theory Nicolas Delfosse - Université de Sherbrooke joint work with Gilles Zémor - Université de Bordeaux

DocID: 1ryK3 - View Document

Academia / Physics / Systems science / Network theory / Systems theory / Quantum mechanics / Cybernetics / Combinatorics / Percolation / Complex systems / Quantum entanglement / Complex network

SURF-IFISC proposalsAutonomous Boolean Networks for Neuro-Inspired Information Processing Advisors: Miquel Cornelles Soriano and Ingo Fischer Digital systems are typically programmed to obtain a well-defined

DocID: 1qRY2 - View Document

Network theory / Mathematics / Networks / Graph theory / Physics / Algebraic graph theory / Combinatorics / Network analysis / Centrality / Percolation theory / Percolation / Complex network

PHYSICAL REVIEW E 86, Social climber attachment in forming networks produces a phase transition in a measure of connectivity Dane Taylor1,*,† and Daniel B. Larremore1,2,*,‡ 1

DocID: 1qIJt - View Document

Graph theory / Graph coloring / NP-complete problems / Incidence coloring

A phase transition on the evolution of bootstrap percolation processes on preferential attachment graphs Mohammed Amin Abdullah∗‡ Nikolaos Fountoulakis†‡

DocID: 1pQ31 - View Document