<--- Back to Details
First PageDocument Content
Curvature / 3-manifolds / Riemannian geometry / Geometric flow / Partial differential equations / Ricci flow / Ricci curvature / Scalar curvature / Metric tensor / Differential geometry / Geometry / Mathematical analysis
Date: 2011-07-30 21:45:28
Curvature
3-manifolds
Riemannian geometry
Geometric flow
Partial differential equations
Ricci flow
Ricci curvature
Scalar curvature
Metric tensor
Differential geometry
Geometry
Mathematical analysis

arXiv:math/0211159v1 [math.DG] 11 Nov 2002

Add to Reading List

Source URL: xxx.lanl.gov

Download Document from Source Website

File Size: 320,93 KB

Share Document on Facebook

Similar Documents

Ricci Flow for Warped Product Manifolds Kartik Prabhu (05PH2001) Supervisor: Dr. Sayan Kar Dept. of Physics & Meteorology Indian Institute of Technology Kharagpur May 04, 2010

DocID: 1tLpR - View Document

Mathematical analysis / Convex analysis / Mathematics / Geometry / Convex function / Differential geometry of surfaces / Ricci flow / Convex set / Legendre transformation / Flow / Height

Annals of Mathematics), 1185–1239 doi: annalsConvex solutions to the mean curvature flow By Xu-Jia Wang

DocID: 1qXmF - View Document

Curvature / Riemannian geometry / Partial differential equations / Geometric flow / Ricci flow / Sectional curvature / Scalar curvature / Ricci curvature / Riemannian manifold / Moduli space / Manifold / Einstein manifold

arXiv:1601.04877v2 [math.DG] 25 JanNonconnected Moduli Spaces of Nonnegative Sectional Curvature Metrics on Simply Connected Manifolds Anand Dessai∗, Stephan Klaus, and Wilderich Tuschmann

DocID: 1p1yx - View Document

THE CONJUGATE HEAT EQUATION AND ANCIENT SOLUTIONS OF THE RICCI FLOW arXiv:1006.0540v1 [math.DG] 3 JunXIAODONG CAO

DocID: 1nuSx - View Document

Applications of Persistent Homology to Simplicial Ricci Flow Paul M. Alsing∗1 , Howard A. Blair†2 , Matthew Corne‡1 , Gordon Jones§3 , Warner A. Miller¶4 , Konstantin Mischaikowk5 and Vidit Nanda∗∗6 1 2

DocID: 1lpGa - View Document