<--- Back to Details
First PageDocument Content
Regression analysis / Statistical theory / Statistical inference / Maximum likelihood / Bias of an estimator / M-estimator / Estimator / Variance / Dummy variable / Statistics / Estimation theory / Econometrics
Date: 2014-02-26 08:39:04
Regression analysis
Statistical theory
Statistical inference
Maximum likelihood
Bias of an estimator
M-estimator
Estimator
Variance
Dummy variable
Statistics
Estimation theory
Econometrics

Using Sampling Weights for Model Estimation? G. Rohwer Version 1

Add to Reading List

Source URL: www.stat.ruhr-uni-bochum.de

Download Document from Source Website

File Size: 185,95 KB

Share Document on Facebook

Similar Documents

Perspectival Variance and Worldly Fragmentation Martin A. Lipman Objects often manifest themselves in incompatible ways across perspectives that are epistemically on a par. The standard response to such cases is to deny

DocID: 1vrXP - View Document

Microsoft WordAPP Variance

DocID: 1vrre - View Document

IETF Trust Statement of Activity For the Month Ending March 31, 2017 March YTD Actual YTD Budget YTD Variance Annual Budget Notes

DocID: 1voPG - View Document

LAKE SHASTINA PROPERTY OWNERS ASSOCIATIONEverhart Drive Weed CaVoiceFaxApplication # ____________ APPLICATION FOR VARIANCE DATE __________________

DocID: 1vo6V - View Document

Portfolios & Systematic Risk Expected Return and Variance of a Portfolio E(R)=ΣwiE(ri) V(R)=ΣΣwiwjCov(ri,rj) The Variance Contributed by Stock i ΣwjCov(ri,rj) =Cov(ri,Σwjr)

DocID: 1vnjW - View Document