<--- Back to Details
First PageDocument Content
Geodesy / Navigation / Conformal mapping / Map projection / Mercator projection / Gnomonic projection / Rhumb line / Latitude / Nautical chart / Cartographic projections / Cartography / Geometry
Date: 2006-12-12 10:41:16
Geodesy
Navigation
Conformal mapping
Map projection
Mercator projection
Gnomonic projection
Rhumb line
Latitude
Nautical chart
Cartographic projections
Cartography
Geometry

Basic Geodesy Issue 8 September 2005 “Ideal” Maps

Add to Reading List

Source URL: earth-info.nga.mil

Download Document from Source Website

File Size: 60,62 KB

Share Document on Facebook

Similar Documents

Mathematics / Graph theory / Mathematical analysis / Conformal mapping / Projective geometry / Planar graph / Riemann surfaces / Complex analysis / Operator theory / Differential geometry of surfaces / Stereographic projection / Brouwer fixed-point theorem

Spectral Graph Theory Lecture 20 The Second Eigenvalue of Planar Graphs Daniel A. Spielman

DocID: 1r9rk - View Document

Geometry / Geodesy / Space / Ellipsoid / Map projection / Triaxial / Latitude / Thorn / Differential geometry of surfaces / Conformal map / Three-dimensional space

Jacobi Conformal Projection of the Triaxial Ellipsoid: New Projection for Mapping of Small Celestial Bodies Maxim V. Nyrtsov, Maria E. Fleis, Michael M. Borisov and Philip J. Stooke

DocID: 1qOSu - View Document

Mathematics / Mathematical analysis / Geometry / Conformal mapping / Projective geometry / Riemann surfaces / Planar graphs / Complex analysis / Differential geometry of surfaces / Constructible universe / Brouwer fixed-point theorem / Stereographic projection

Spectral Graph Theory and its Applications September 16, 2004 Lecture 5 Lecturer: Daniel A. Spielman

DocID: 1q2vH - View Document

Moduli theory / Riemann surfaces / Differential geometry / Geometric topology / Quantum field theory / Moduli space / Mapping class group / Conformal geometry / Moduli / Teichmller space / Moduli stack of formal group laws

Moduli Spaces Two Riemann surfaces of the same topological type can, of course, be conformally inequivalent; but how many conformal structures are there, and how can one deform them ? Take for example an annulus A(r, R)

DocID: 1pKbH - View Document

Riemann surfaces / Complex analysis / Conformal mapping / Differential geometry / Symbol / Table of stars with Bayer designations

doi:ipiInverse Problems and Imaging Volume 5, No. 2, 2011, 485–510 RECOVERING CONDUCTIVITY AT THE BOUNDARY IN

DocID: 1pjsU - View Document