<--- Back to Details
First PageDocument Content
Estimation theory / Model selection / Information theory / Maximum likelihood / Supervised learning / Feature selection / Kullback–Leibler divergence / Regularization / Mutual information / Statistics / Statistical theory / Machine learning
Date: 2007-12-11 16:41:19
Estimation theory
Model selection
Information theory
Maximum likelihood
Supervised learning
Feature selection
Kullback–Leibler divergence
Regularization
Mutual information
Statistics
Statistical theory
Machine learning

CS229 Lecture notes Andrew Ng Part VI Regularization and model

Add to Reading List

Source URL: see.stanford.edu

Download Document from Source Website

File Size: 86,63 KB

Share Document on Facebook

Similar Documents

Maximum Likelihood Estimation for Allele Frequencies Biostatistics 666 Previous Series of Lectures: Introduction to Coalescent Models

DocID: 1vqGj - View Document

Maximum Likelihood Mohammad Emtiyaz Khan EPFL Sep 29, 2015 ©Mohammad Emtiyaz Khan 2015

DocID: 1vhzG - View Document

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization R. Nowak

DocID: 1vgnM - View Document

Stochastic Maximum Likelihood Optimization via Hypernetworks Abdul-Saboor Sheikh, Kashif Rasul, Andreas Merentitis & Urs Bergmann {saboor.sheikh, kashif.rasul, urs.bergmann}@zalando.de

DocID: 1vg3V - View Document

ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak Lecture 13: Maximum Likelihood Estimation

DocID: 1vbHd - View Document