<--- Back to Details
First PageDocument Content
Computer vision / Graph connectivity / Gaussian pyramid / Laplacian pyramid / Vertex / Dual polyhedron / Regular graph / Connected component / Neighbourhood / Graph theory / Mathematics / Image processing
Date: 2010-05-07 06:26:38
Computer vision
Graph connectivity
Gaussian pyramid
Laplacian pyramid
Vertex
Dual polyhedron
Regular graph
Connected component
Neighbourhood
Graph theory
Mathematics
Image processing

Add to Reading List

Source URL: www.prip.tuwien.ac.at

Download Document from Source Website

File Size: 766,72 KB

Share Document on Facebook

Similar Documents

Proof, beliefs, and algorithms through the lens of sum-of-squares 1 Cheeger’s inequality Let G be a d-regular graph with vertex set V = [n]. For a vertex

DocID: 1sYSC - View Document

Happy Edges: Threshold-Coloring of Regular Lattices Md. J. Alam, S. G. Kobourov, S. Pupyrev, and J. Toeniskoetter Department of Computer Science, University of Arizona, Tucson, USA Abstract. We study a graph coloring pro

DocID: 1sVpe - View Document

Lecture 24 Spectral Graph Theory Strongly Regular Graphs, part 2 November 20, 2009

DocID: 1sgvg - View Document

Spectral Graph Theory Lecture 23 Strongly Regular Graphs, part 1 Daniel A. Spielman

DocID: 1s4GT - View Document

Formal languages / Grammar / Language / Cognitive science / Formal grammar / Context-sensitive grammar / Tree-adjoining grammar / Context-free grammar / Regular tree grammar / Tree automaton / Regular language / Graph rewriting

24. Theorietag „Automaten und Formale Sprachen“ Caputh, 23. – 25. September 2014 Henning Bordihn, Bianca Truthe (Hrsg.)

DocID: 1rsDZ - View Document