<--- Back to Details
First PageDocument Content
Operations research / Econometrics / Convex optimization / Numerical linear algebra / Estimation theory / Preconditioner / Support vector machine / Linear regression / Gradient descent / Regression analysis / Stochastic gradient descent / Linear programming
Date: 2015-12-28 18:07:07
Operations research
Econometrics
Convex optimization
Numerical linear algebra
Estimation theory
Preconditioner
Support vector machine
Linear regression
Gradient descent
Regression analysis
Stochastic gradient descent
Linear programming

Weighted SGD for ?&#120005; Regression with Randomized Preconditioning

Add to Reading List

Source URL: www.stat.berkeley.edu

Download Document from Source Website

File Size: 300,81 KB

Share Document on Facebook

Similar Documents

Augmented Lagrangian Preconditioner for Linear Stability Analysis of incompressible fluid flows on large configurations J.Moulin1, J-L. Pfister1, O.Marquet1, P. Jolivet2 1 Office National d’Etudes et de Recherches Aér

DocID: 1uSZ0 - View Document

Augmented Lagrangian preconditioner for Linear Stability Analysis of the incompressible Navier-Stokes equation Johann Moulin, Jean-Lou Pfister, Olivier Marquet and Pierre Jolivet Linear Stability Analysis is a widely use

DocID: 1uQdT - View Document

Direct solver and domain decomposition preconditioner for indefinite finite element matrices

DocID: 1tSk2 - View Document

Mathematics / Mathematical analysis / Numerical analysis / Numerical linear algebra / Mathematical optimization / Operations research / Bundle adjustment / Geodesy / Surveying / Gradient descent / Preconditioner / Cholesky decomposition

g2o: A General Framework for Graph Optimization Rainer K¨ummerle Giorgio Grisetti Hauke Strasdat

DocID: 1rqHa - View Document

Numerical linear algebra / Mathematics / Preconditioner / Mathematical analysis / Iterative method / Generalized minimal residual method / Optimal control / Computational science

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Sparse Preconditioning for Model Predictive Control Knyazev, A.; Malyshev, A. TR2016-046

DocID: 1rdHo - View Document