<--- Back to Details
First PageDocument Content
Large cardinals / Determinacy / Forcing / Z notation / Reflection principle / Continuum hypothesis / Constructible universe / Peter Koellner / Zermelo–Fraenkel set theory / Mathematical logic / Set theory / Mathematics
Date: 2012-01-24 13:32:21
Large cardinals
Determinacy
Forcing
Z notation
Reflection principle
Continuum hypothesis
Constructible universe
Peter Koellner
Zermelo–Fraenkel set theory
Mathematical logic
Set theory
Mathematics

/home/User/.TeXmacs/system/tmp/tmp_1731426799.ps

Add to Reading List

Source URL: logic.harvard.edu

Download Document from Source Website

File Size: 224,44 KB

Share Document on Facebook

Similar Documents

Realizability for Constructive Zermelo-Fraenkel Set Theory Michael Rathjen∗ Department of Mathematics, Ohio State University Columbus, OH 43210, U.S.A.

DocID: 1nKls - View Document

The Disjunction and Related Properties for Constructive Zermelo-Fraenkel Set Theory Michael Rathjen∗ Department of Mathematics, Ohio State University Columbus, OH 43210, U.S.A.

DocID: 1nsa4 - View Document

Lifschitz Realizability for Intuitionistic Zermelo-Fraenkel Set Theory RAY-MING CHEN, School of Mathematics, University of Leeds Leeds LS2 9JT, UK, E-mail: MICHAEL RATHJEN, School of Mathematics, Un

DocID: 1nk5b - View Document

Chapter 15 Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions Michael Rathjen

DocID: 1n7Wl - View Document

Constructive Zermelo-Fraenkel set theory and the limited principle of omniscience Michael Rathjen Department of Pure Mathematics University of Leeds, Leeds LS2 9JT, England E-mail:

DocID: 1mBRQ - View Document