<--- Back to Details
First PageDocument Content
Astrophysics / Scripting languages / Particle physics / Parameter / Bidirectional reflectance distribution function / AS/400 Control Language / Statistical parameter / Polar coordinate system / Integral / Physics / Radiometry / 3D computer graphics
Date: 2010-10-08 10:38:36
Astrophysics
Scripting languages
Particle physics
Parameter
Bidirectional reflectance distribution function
AS/400 Control Language
Statistical parameter
Polar coordinate system
Integral
Physics
Radiometry
3D computer graphics

Microsoft Word - MIST Manual v3.01.doc

Add to Reading List

Source URL: www.nist.gov

Download Document from Source Website

File Size: 572,48 KB

Share Document on Facebook

Similar Documents

Vector Derivatives, Gradients, and Generalized Gradient Descent Algorithms ECE 275A – Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego

DocID: 1uTsJ - View Document

Parametric Statistical Modeling ECE 275A – Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego

DocID: 1uO0C - View Document

Using Paraphrases for Parameter Tuning in Statistical Machine Translation Nitin Madnani, Necip Fazil Ayan, Philip Resnik & Bonnie J. Dorr Institute for Advanced Computer Studies University of Maryland College Park, MD, 2

DocID: 1uggY - View Document

Prediction / Statistical forecasting / Forecasting / Time series analysis / Forecast error / Forecast model / FORECAST / Economy

Context-Aware Parameter Estimation for Forecast Models in the Energy Domain Lars Dannecker1,2, Robert Schulze1, Matthias Böhm2, Wolfgang Lehner2, Gregor Hackenbroich1 1SAP Research Dresden, 2Technische Universität Dres

DocID: 1rnIj - View Document

Statistics / Estimation theory / Statistical theory / Probability distributions / Statistical inference / Bias of an estimator / Maximum likelihood estimation / Efficient estimator / Estimator / Uniform distribution / Normal distribution / Exponential distribution

Chapter 6 Parameter Estimation Take a random variable x described by a pdf f (x): the sample space is defined to be the set of all possible values of x. The set of n independent measurements of the random variable x, {x

DocID: 1rnil - View Document