<--- Back to Details
First PageDocument Content
Applied mathematics / Hashing / Randomized algorithm / Method of conditional probabilities / Universal hashing / Chernoff bound / Tabulation hashing / Random walk / Algorithm / Search algorithms / Mathematics / Theoretical computer science
Date: 2014-12-17 20:04:41
Applied mathematics
Hashing
Randomized algorithm
Method of conditional probabilities
Universal hashing
Chernoff bound
Tabulation hashing
Random walk
Algorithm
Search algorithms
Mathematics
Theoretical computer science

Notes on Randomized Algorithms CS: Fall 2014 James Aspnes:04

Add to Reading List

Source URL: cs.yale.edu

Download Document from Source Website

File Size: 1,75 MB

Share Document on Facebook

Similar Documents

Disperser / Extractor / Chernoff bound / Exponentiation

Reconstructive Dispersers and Hitting Set Generators Christopher Umans? Computer Science Department California Institute of Technology Pasadena CA 91125

DocID: 1pzAr - View Document

Linear algebra / Chernoff bound / Matrix / Trace / Exponentiation / Random matrix

Spectral Graph Theory Lecture 17 Sparsification by Effective Resistance Sampling Daniel A. Spielman

DocID: 1psXs - View Document

Probability distributions / NC / Chernoff bound / Binomial distribution / Outlier / Normal distribution / Beta distribution

JMLR: Workshop and Conference Proceedings vol 40:1–30, 2015 Faster Algorithms for Testing under Conditional Sampling Moein Falahatgar Ashkan Jafarpour Alon Orlitsky

DocID: 1pgGZ - View Document

Analysis of algorithms / Balls into bins / With high probability / Randomized algorithm / Time complexity / Chernoff bound / Maximal independent set / EdmondsPruhs protocol

Tight Bounds for Parallel Randomized Load Balancing Christoph Lenzen, Roger Wattenhofer {lenzen,wattenhofer}@tik.ee.ethz.ch arXiv:1102.5425v1 [cs.CC] 26 Feb 2011

DocID: 1p7SC - View Document

Chernoff bound / Primality tests / Central limit theorem / Exponential mechanism

Efficient Sampling Methods for Discrete Distributions Karl Bringmann and Konstantinos Panagiotou Max Planck Institute for Informatics Campus E1.4, 66123 Saarbr¨ ucken, Germany

DocID: 1oabV - View Document