<--- Back to Details
First PageDocument Content
Theory of computation / Mathematical logic / Randomness / Computable number / Algorithmically random sequence / Computable function / Random sequence / Measure-preserving dynamical system / Algorithmic information theory / Theoretical computer science / Computability theory / Mathematics
Date: 2009-04-16 08:57:17
Theory of computation
Mathematical logic
Randomness
Computable number
Algorithmically random sequence
Computable function
Random sequence
Measure-preserving dynamical system
Algorithmic information theory
Theoretical computer science
Computability theory
Mathematics

Add to Reading List

Source URL: www.loria.fr

Download Document from Source Website

File Size: 354,53 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Computability theory / Mathematics / Theory of computation / Theoretical computer science / Martingale theory / Stochastic processes / Kakeya set / Real analysis / Computable function / Martingale / Computable number

Lines Missing Every Random Point∗ Jack H. Lutz† Neil Lutz‡ Abstract

DocID: 1qlxM - View Document

Computability theory / Theoretical computer science / Theory of computation / Mathematics / Mathematical logic / Turing machine / Models of computation / Computable number / Alan Turing / Computable function / Definable real number / Computability

PDF Document

DocID: 1pZ37 - View Document

Mathematics / Mathematical logic / Computability theory / Logic / Theory of computation / Computable number / Structure / Computable function / Sigma-algebra

A computable axiomatisation of the topology of R and C Paul Taylor 6 August 2009

DocID: 1pMn0 - View Document

Computability theory / Theory of computation / Mathematical logic / Models of computation / Theoretical computer science / Gdel numbering / Membrane computing / Multiset / Kurt Gdel / Computable number / Numbering / Turing machine

Microsoft Word - IBSAlgorithms.doc

DocID: 1p3sE - View Document

Theory of computation / Computability theory / Busy beaver / Computable function / Computability / Turing machine / Halting problem / Hypercomputation / Computable number / Algorithm / Alan Turing / Ackermann function

Who Can Name the Bigger Number? Scott Aaronson∗ 1999 In an old joke, two noblemen vie to name the bigger number. The first, after ruminating for hours, triumphantly announces ”Eighty-three!” The second,

DocID: 1oyBY - View Document