<--- Back to Details
First PageDocument Content
Planar graphs / Graph coloring / Line graph / Robertson–Seymour theorem / Graph theory / Minor / Graph operations
Date: 2009-08-06 03:12:08
Planar graphs
Graph coloring
Line graph
Robertson–Seymour theorem
Graph theory
Minor
Graph operations

Nonconstructive Tools for Proving Polynomial-Time Decidability MICHAEL R.

Add to Reading List

Source URL: www.mrfellows.net

Download Document from Source Website

File Size: 982,28 KB

Share Document on Facebook

Similar Documents

On Maximum Differential Graph Coloring Yifan Hu1 , Stephen Kobourov2 , and Sankar Veeramoni2 1 2

DocID: 1uNMt - View Document

Distrib. Comput:261–280 DOIs00446Distributed algorithms for the Lovász local lemma and graph coloring Kai-Min Chung1 · Seth Pettie2 · Hsin-Hao Su3

DocID: 1uyZk - View Document

Graph and hypergraph oloring Mi hael Krivelevi h 1. Basi de nitions: vertex oloring, hromati number, edge oloring, hromati index. Coloring in nite graphs, De Brujin-Erd}os theorem 2. Vertex degrees and olorings.

DocID: 1upWX - View Document

Distributed Computing Prof. R. Wattenhofer BA/MA/SA: Heuristics for Graph Coloring

DocID: 1uobf - View Document

AUT Journal of Electrical Engineering AUT J. Elec. Eng., 130 DOI: eejData Hiding Method Based on Graph Coloring and Pixel Block‘s Correlation in Color Image

DocID: 1tYtr - View Document