<--- Back to Details
First PageDocument Content
Text Retrieval Conference / Relevance feedback / Search engine indexing / Relevance / Document retrieval / Query expansion / Concept Search / Learning to rank / Information science / Information retrieval / Okapi BM25
Date: 2007-02-16 13:07:42
Text Retrieval Conference
Relevance feedback
Search engine indexing
Relevance
Document retrieval
Query expansion
Concept Search
Learning to rank
Information science
Information retrieval
Okapi BM25

TREC 2005 Genomics Track at I2R

Add to Reading List

Source URL: trec.nist.gov

Download Document from Source Website

File Size: 80,04 KB

Share Document on Facebook

Similar Documents

Cascading Bandits: Learning to Rank in the Cascade Model Branislav Kveton Adobe Research, San Jose, CA Csaba Szepesv´ari Department of Computing Science, University of Alberta

DocID: 1uHeV - View Document

Learning to Rank By Aggregating Expert Preferences Maksims N. Volkovs Hugo Larochelle Richard S. Zemel

DocID: 1tUcb - View Document

McRank: Learning to Rank Using Multiple Classification and Gradient Boosting Ping Li ∗ Dept. of Statistical Science Cornell University

DocID: 1tgDg - View Document

Tagging data as implicit feedback for learning-to-rank Beate Navarro Bullock Robert Jäschke Andreas Hotho

DocID: 1soOw - View Document

Regression Rank: Learning to Meet the Opportunity of Descriptive Queries Matthew Lease1 , James Allan2, and Bruce Croft2 1 Brown Laboratory for Linguistic Information Processing (BLLIP)

DocID: 1sm9K - View Document