First Page | Document Content | |
---|---|---|
![]() Date: 2016-08-23 18:37:55Monte Carlo methods Statistics Applied mathematics Probability Quasirandomness Quasi-Monte Carlo method Computational physics Sampling techniques Statistical mechanics Markov chain Monte Carlo Monte Carlo Monte | Source URL: mcqmc2016.stanford.eduDownload Document from Source WebsiteFile Size: 1,37 MBShare Document on Facebook |
![]() | PDF DocumentDocID: 1rf3c - View Document |
![]() | From Discrepancy to Declustering: Near-optimal multidimensional declustering strategies for range queries [Extended Abstract] Chung-Min ChenDocID: 1renq - View Document |
![]() | Algorithmic Construction of Low-Discrepancy Point Sets via Dependent Randomized Rounding Benjamin Doerra , Michael Gnewuchb , Magnus Wahlstr¨oma a Max-Planck-Institut f¨DocID: 1k85r - View Document |
![]() | Implementation of a Component-By-Component Algorithm to Generate Small Low-Discrepancy Samples Benjamin Doerr, Michael Gnewuch, and Magnus Wahlstr¨om Abstract In [B. Doerr, M. Gnewuch, P. Kritzer, F. Pillichshammer. MoDocID: 1jLP8 - View Document |
![]() | PDF DocumentDocID: 1j2Pt - View Document |