<--- Back to Details
First PageDocument Content
Mathematical sciences / Actuarial science / Year of birth missing / Options / Quantitative analyst / Bruno Dupire / Emanuel Derman / Computational finance / Black–Scholes / Financial economics / Mathematical finance / Finance
Date: 2007-03-01 17:31:26
Mathematical sciences
Actuarial science
Year of birth missing
Options
Quantitative analyst
Bruno Dupire
Emanuel Derman
Computational finance
Black–Scholes
Financial economics
Mathematical finance
Finance

Wilmott Awards 2006 Contribution to Quantitative Finance

Add to Reading List

Source URL: www.pstat.ucsb.edu

Download Document from Source Website

File Size: 614,16 KB

Share Document on Facebook

Similar Documents

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP2 Formule de Black–Scholes – Monte Carlo pour une option portant sur plusieurs sous–jacents ´ Pardoux

DocID: 1sVnD - View Document

ECOLE CENTRALE MARSEILLE Math´ematiques Financi`eres TP1 Formule de Black–Scholes – Monte Carlo, R´eduction de variance ´ Pardoux E.

DocID: 1sTgm - View Document

On the Emergence of Delta-Vega Hedging in the Black and Scholes Model Sebastian Herrmann ETH Zürich Joint work with Johannes Muhle-Karbe ETH Risk Day 2015

DocID: 1sLS7 - View Document

Economy / Maarten / Tilburg / Econometrics / BlackScholes model / Quantitative analyst / Mathematics

nekst Volume 19, fourth edition, June 2011 Black-Scholes Model in Context Interview Robert C. Merton

DocID: 1qRdw - View Document

Mathematical finance / Economy / Finance / Money / BlackScholes equation / BlackScholes model / Option / Volatility / Quantitative analyst / Futures contract / Geometric Brownian motion / Stochastic volatility

The derivation of the basic Black-Scholes options pricing equation follows from imposing the condition that a riskless por tfolio made up of stock and options must return the same interest rate as other riskless assets,

DocID: 1qcrE - View Document