<--- Back to Details
First PageDocument Content
Integer sequences / Modular arithmetic / Quadratic residue / Integers / Repunit / Miller–Rabin primality test / Prime number / Mersenne prime / Primality test / Mathematics / Abstract algebra / Number theory
Date: 2007-08-07 12:51:16
Integer sequences
Modular arithmetic
Quadratic residue
Integers
Repunit
Miller–Rabin primality test
Prime number
Mersenne prime
Primality test
Mathematics
Abstract algebra
Number theory

Add to Reading List

Source URL: www.maths.tcd.ie

Download Document from Source Website

File Size: 181,51 KB

Share Document on Facebook

Similar Documents

Pseudoprimes / Mathematics / Number theory / Integer sequences / Discrete mathematics / Fermat pseudoprime / Carmichael number / MillerRabin primality test / Prime number / Primality test / Mersenne prime / Unique prime

Pseudoprimes and Carmichael Numbers Emily Riemer MATH0420 May 3,

DocID: 1mNn0 - View Document

FourQ: four dimensional decompositions on a Q-curve over the Mersenne prime

DocID: 1lWqr - View Document

Mathematics / Primality tests / Number theory / Cryptography / Integer sequences / Prime number / Primality certificate / Integer factorization / Fermat number / Mersenne prime / Pseudoprime / Randomized algorithm

LNCSFaster Primality Testing

DocID: 1lq38 - View Document

On the largest prime factor of the Mersenne numbers Kevin Ford Department of Mathematics The University of Illinois at Urbana-Champaign Urbana Champaign, IL 61801, USA

DocID: 1lcEp - View Document

Number theory / Prime numbers / Number theorists / Mersenne prime / Great Internet Mersenne Prime Search / Marin Mersenne / 7 / Double Mersenne number / Mathematics / Integer sequences / Numbers

University of Utah Department of Mathematics January 2004 Volume 4, Number 4

DocID: 19K5y - View Document