<--- Back to Details
First PageDocument Content
Quadratic forms / Degenerate form / Bilinear form / Orthogonal group / Discriminant / Symmetric matrix / Symmetric bilinear form / Signature / Inner product space / Algebra / Mathematics / Linear algebra
Date: 2009-11-07 18:38:10
Quadratic forms
Degenerate form
Bilinear form
Orthogonal group
Discriminant
Symmetric matrix
Symmetric bilinear form
Signature
Inner product space
Algebra
Mathematics
Linear algebra

Embeddings of Integral Quadratic Forms Rick Miranda

Add to Reading List

Source URL: www.math.ucsb.edu

Download Document from Source Website

File Size: 1,07 MB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Algebraic structures / Linear algebra / Quadratic forms / Ring theory / Abstract algebra / Bilinear form / Semiring / Module / Ring / Symmetric bilinear form

773 Documenta Math. Quadratic and Symmetric Bilinear Forms on Modules with Unique Base over a Semiring

DocID: 1rqAw - View Document

Algebra / Mathematics / Linear algebra / Quadratic forms / Clifford algebra / Bilinear form / Witt group / Mutation / Sesquilinear form / Trace / Quaternion / -quadratic form

201 Documenta Math. Quadratic Quaternion Forms, Involutions and Triality

DocID: 1rnAz - View Document

Algebra / Abstract algebra / Multilinear algebra / Quadratic forms / Lie groups / Algebras / Clifford algebra / Involution / Algebra over a field / Exterior algebra / Quaternion algebra / Bilinear form

99 Documenta Math. Involutions and Trace Forms on Exterior Powers of a Central Simple Algebra

DocID: 1r2m8 - View Document

Algebra / Quadratic forms / Isotropic quadratic form / Degenerate bilinear form / Isotropy / Pfister form / U-invariant

127 Doc. Math. J. DMV On the Nonexcellence of Field Extensions F ()=F O. T. Izhboldin1

DocID: 1qOyY - View Document

Algebra / Quadratic forms / Isotropic quadratic form / Degenerate bilinear form / Isotropy / Pfister form / U-invariant

127 Doc. Math. J. DMV On the Nonexcellence of Field Extensions F ()=F O. T. Izhboldin1

DocID: 1qKCs - View Document