<--- Back to Details
First PageDocument Content
Quadratic forms / Lie groups / Linear algebra / Mathematical structures / Smith–Minkowski–Siegel mass formula / Algebraic number field / Lattice / Orthogonal group / Algebraic structure / Algebra / Abstract algebra / Mathematics
Date: 2014-01-30 14:54:46
Quadratic forms
Lie groups
Linear algebra
Mathematical structures
Smith–Minkowski–Siegel mass formula
Algebraic number field
Lattice
Orthogonal group
Algebraic structure
Algebra
Abstract algebra
Mathematics

Add to Reading List

Source URL: www.math.harvard.edu

Download Document from Source Website

File Size: 219,24 KB

Share Document on Facebook

Similar Documents

Quadratic forms / Algebraic number theory / Lie groups / Algebraic groups / Algebraic number field / Adele ring / Lattice / Smith–Minkowski–Siegel mass formula / Finite field / Abstract algebra / Algebra / Field theory

WEIL’S CONJECTURE FOR FUNCTION FIELDS DENNIS GAITSGORY AND JACOB LURIE Abstract. Let X be an algebraic curve defined over a finite field Fq and let G be a smooth affine group scheme over X with connected fibers whose g

DocID: L0dt - View Document

Quadratic forms / Algebraic number theory / 15 and 290 theorems / Quadratic polynomial / Modular form / Binary quadratic form / Ideal class group / Quadratic residue / Smith–Minkowski–Siegel mass formula / Abstract algebra / Algebra / Mathematics

Adv. appl. Clifford alg[removed]), 665–676 c 2008 Birkh¨  auser Verlag Basel/Switzerland[removed]-12, published online May 27, 2008 DOI[removed]s00006[removed]y

DocID: zTFP - View Document

Quadratic forms / 15 and 290 theorems / Prime number / Number / Modular form / Lattice / Theta function / Smith–Minkowski–Siegel mass formula / Unimodular lattice / Mathematics / Abstract algebra / Mathematical analysis

Universal quadratic forms and the 290-Theorem Manjul Bhargava and Jonathan Hanke 1 Introduction

DocID: z1O2 - View Document

Quadratic forms / Lie groups / Linear algebra / Mathematical structures / Smith–Minkowski–Siegel mass formula / Algebraic number field / Lattice / Orthogonal group / Algebraic structure / Algebra / Abstract algebra / Mathematics

PDF Document

DocID: mlj3 - View Document

Lie groups / Mathematics / Unimodular lattice / Lattice / Smith–Minkowski–Siegel mass formula / E8 lattice / E7 / Orthogonal group / E6 / Abstract algebra / Algebra / Quadratic forms

NON-SPLIT REDUCTIVE GROUPS OVER Z Brian Conrad Abstract. — We study the following phenomenon: some non-split connected semisimple Q-groups G admit flat affine Z-group models G with “everywhere good reduction” (i.e.

DocID: dox6 - View Document