<--- Back to Details
First PageDocument Content
Integer sequences / Combinatorics / Number theory / Enumerative combinatorics / Binomial coefficient / Bernoulli number / Generating function / Eulerian number / Permutation / Random permutation statistics / Binomial series
Date: 2010-04-14 23:07:44
Integer sequences
Combinatorics
Number theory
Enumerative combinatorics
Binomial coefficient
Bernoulli number
Generating function
Eulerian number
Permutation
Random permutation statistics
Binomial series

A symmetrical Eulerian identity Fan Chung∗ Ron Graham∗ Don Knuth†

Add to Reading List

Source URL: www.math.ucsd.edu

Download Document from Source Website

File Size: 81,50 KB

Share Document on Facebook

Similar Documents

Mathematics / Mathematical analysis / Mathematical induction / Integer sequences / Approximation theory / Mathematical series / Binomial coefficient / Aurifeuillean factorization

Algorithms and Data Structures (WS15/16) Example Solutions for Unit 4 Problem 1 skipped

DocID: 1rcMI - View Document

Mathematical analysis / Mathematics / Combinatorics / Peetre theorem / Binomial coefficient

Bryan Rainey Junior, Computer Science, Purdue University Problem of the Week Problem No. 5 (Fall 2014 Series)

DocID: 1pUyc - View Document

Integer sequences / Combinatorics / Number theory / Enumerative combinatorics / Binomial coefficient / Bernoulli number / Generating function / Eulerian number / Permutation / Random permutation statistics / Binomial series

A symmetrical Eulerian identity Fan Chung∗ Ron Graham∗ Don Knuth†

DocID: 1pALU - View Document

Options / Mathematical finance / BlackScholes model / Risk-neutral measure / Put option / Call option / Volatility / Binomial options pricing model / Lattice model

THE BINOMIAL OPTION PRICING MODEL The Binomial Option Pricing Model The authors consider the case of option pricing for a binomial process—the first in a series of articles in Financial Engineering. by Simon Benninga

DocID: 1pvZq - View Document

PreCalculus Formulas Sequences and Series: Binomial Theorem ⎛ n⎞ ( a + b) = ∑ ⎜ ⎟ a n− k b k

DocID: 1nm56 - View Document